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Abstract. We define a novel approach for optimizing the use of libraries
within applications. We propose that library-defined abstractions be clas-
sified to support their automated optimization and by leveraging these
additional semantics we enable the library specific optimization of appli-
cation codes. We believe that such an approach entails the use of formal
methods.

We describe ROSE, a framework for building source-to-source transla-
tors, used for the high-level optimization of scientific applications. It is
a common perception that performance is inversely proportional to the
level of abstraction. Our work shows that this is not the case if the
additional semantics of library-defined abstractions can be leveraged.
ROSE allows the recognition of such abstractions and the optimization
of their use in applications. We show how ROSE can be used to uti-
lize the additional semantics within the compile-time optimization and
present promising results.

1 Introduction

User-defined high-level abstractions are productive in the development of appli-
cation codes. Unfortunately the use of high-level abstractions usually introduces
a penalty in performance due to indirection, insufficient global optimizations
of compilers, or the lack of program analysis to infer high-level semantics and
properties of user-defined abstractions within acceptable time bounds. Such lack
of information about semantics of user-defined abstractions in libraries disal-
lows to perform optimizations of application codes using the library’s provided
abstractions.

If an optimization is known for a user-defined abstraction but the required
properties of this abstraction for guaranteeing the correctness of the optimization
cannot be established, we face a (known) performance penalty because the more
efficient version of the code is not generated. Such a transformation can be
carried out manually but this clearly reduces productivity because it would also



require to maintain the manually optimized code. Our approach aims at fully
automating such optimizations.

We bridge the gap of unknown high-level semantics by providing additional
information through annotations. This additional information is used to enable
optimizations specific to user-defined abstractions. We present a compile-time
approach for the optimization of scientific applications using the semantics of
library abstractions and demonstrate the approach toward the definition of an-
notations for abstractions using a specific abstraction. The abstraction chosen
for optimization in our example is an array abstraction contained within an array
class library which is used in our scientific applications.

Given appropriate annotations and transformations, the mechanisms we present
to optimize high-level abstractions are sufficient to optimize arbitrary abstrac-
tions. Thus we have addressed numerous aspects of the more general problem
within the current work. Many aspects of future work will depend upon either
manual or automated generation of annotations, to classify the semantic proper-
ties of general abstractions. We describes the concrete work that has been done
to develop an annotation based approach to guide the automated optimization
of high-level abstractions, starting with a motivating example.

1.1 Motivating Example

Figure 1 shows an example of a high-level abstraction. It is an array abstraction
which is used within our current scientific applications and therefore forms an
attractive example problem.

The class Range allows to define integer ranges with a fixed stride for it-
erating, and a class doubleArray where Range objects serve as parameters to
several functions for iterating on an array. In the example main function, we
show how these classes can be used to compute a new value for each point in
the array. The user-defined types Range and doubleArray allow to define such
a computation without the use of any loop constructs in the application code.
Using such classes, the user is freed from the burden of writing loops for each
dimension of an array. In the example we use a two-dimensional array with type
double as element type.

The function “main” consists of four lines. In line 2 two arrays A and B, each
of size 100x100, are created. In line 3 Range objects, defining ranges from 1 to
98 with stride 1 are created. Index 0 and 100 are not used in the example. In
line 4 the computation is defined. For each point within the specified ranges, a
new value is computed on the right hand side as the sum of the four neighbors
in horizontal and vertical direction. In general, an arbitrary expression can be
specified on the right hand side, in particular using the operators available in
the class doubleArray. In this simple example we have restricted the available
functions to “+” and “sin”. The full class consists of about 80 different operators.

For our optimizations it is relevant how the iterations are performed on the
array, whether the array points are read-only or modified, and whether aliases
are used to express sharing of data structures. For optimizations on the lowered
code it is relevant which iterations can be combined into fused loops. We shall



show how such properties can be specified using our annotation language in
section 4.

class Range {

public:
Range ( int base, int bound, int stride );
Range operator+ ( int i );
Range operator- ( int i );

LH

class doubleArray {

public:
doubleArray ( int i, int j );
doubleArray & operator= ( const doubleArray & X );
friend doubleArray operator+ ( const doubleArray & X, const doubleArray & Y );
doubleArray operator() ( const Range & I, const Range & J );
friend doubleArray & sin ( const doubleArray & X );

}

int main () { /x 1 %/
doubleArray A(100,100), B(100,100); /x 2 %/
Range I(1,98,1), J(1,98,1); /% 3 *x/
A(I,J) = B(I-1,J) + B(I+1,J) + B(I,J-1) + B(I,J+1); /% 4 x/

}

Fig. 1. Example: Snippet of header file and program to be optimized.

In the remaining sections we present the ROSE[1,2] architecture used for
implementing the presented approach, the annotation based mechanism for the
optimization of array abstractions, an example problem and performance results
showing the significant potential for such optimizations.

2 Architecture

The ROSE infrastructure offers several components to build a source-to-source
optimizer. A complete C++ front end is available that generates an object-
oriented annotated abstract syntax tree (AST) as an intermediate representa-
tion. Optimizations are performed on the AST. Several components can be used
to build the mid end: a predefined traversal mechanism, an attribute evaluation
mechanism, transformation operators to restructure the AST, and pre-defined
optimizations. Support for library annotations is available by analyzing prag-
mas, comments, or separate annotation files. A C++ back end can be used to
unparse the AST and generate C++ code. An overview of the architecture is
shown in Fig. 2). Steps 1-7, which can be performed by a ROSE source-to-source
optimizer, are described in the following sections.

2.1 Front End

We use the Edison Design Group C++ front end (EDG) [3] to parse C++ pro-
grams. The EDG front end generates an AST and performs a full type evaluation
of the C++ program. This AST is represented as a C data structure. We trans-
late this data structure into an object-oriented abstract syntax tree, Sage III,
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Fig. 2. ROSE Source-To-Source architecture

based on Sage II and Sage+-+[4]. Sage I1I is used by the mid end as intermedi-
ate representation. The annotated library interfaces are header files which are
included by the application program. The AST passed to the mid end represents
the program and all the header files included by the program (see Fig. 2, step 1
and 2).

2.2 Mid End

The mid end allows the restructuring of the AST and performance improving
program transformations. Results of program analysis are made available as an-
notations of AST nodes. The AST processing mechanism allows computation
of inherited and synthesized attributes on the AST (see section 2.4 for more
details). ROSE also includes a scanner which operates on the token stream of a
serialized AST so that parser tools can be used to specify program transforma-
tions in semantic actions of an attribute grammar. The grammar is the abstract
grammar, generating the set of all ASTs. More details on the use of attribute
grammar tools, in particular Coco/R [5] and Frankie Erse’s C/C++ port, can
be found in [2].

An AST restructuring operation specifies a location in the AST where code
should be inserted, deleted, or replaced. Transformation operators can be built



by using the AST processing mechanism in combination with AST restructuring
operations. In Fig. 2 steps 3,4,5 show how the ROSE architecture also allows
using source code fragments and AST fragments in the specification of pro-
gram transformations. A fragment is a concrete piece of code or AST. A pro-
gram transformation is defined by a sequence of AST restructuring operations
whereas transformation operators compute such restructuring sequences. Trans-
formations can be parameterized to define conditional restructuring sequences.
This is discussed in detail in section 3.

2.3 Back End

The back end unparses the AST and generates C++ source code (see Fig. 3,
steps 6 and 7). It can be specified to unparse either all included (header) files or
only the source file(s) specified on the command line. This feature is important
when transforming user-defined data types, for example, when adding generated
methods. Comments are attached to AST nodes and unparsed by the back end.

2.4 AST Processing

The AST processing components allow traversing the AST and computing at-
tributes for each node of the AST. The computed values of attributes can be
attached to AST nodes as annotations and used in subsequent optimizations.
Context information can be passed down the AST as inherited attributes and
results of computations on a subtree can be computed as synthesized attributes
(passing information upwards in the tree). Examples for values of inherited and
synthesized attributes are the nesting level of loops, the scopes of associated
pragma statements, etc. These annotations can be used in transformations to
decide whether a restructuring operation can be applied safely. AST processing
is used by query operators and transformation operators to compute informa-
tion according to the structure of the AST and can also be based on annotations
computed by other operators. This allows building complex high-level transfor-
mation operators from lower-level transformation operators.

2.5 AST Query Operators

Building on top of the methods in section 2.4, AST query operators are provided
that perform numerous types of predefined queries on the AST. AST query
operators may be composed to define complex queries. This mechanism hides
some of the details of the AST traversal and is simple and extensible.

2.6 AST Annotations

The annotations of the AST consist of type information obtained from the EDG
front end and user-defined attributes which allow attaching results of attribute
computations to AST nodes. These results can be accessed by subsequent AST



processing steps and allow the composition of different AST operators. Anno-
tations can also specify additional semantic information. This additional infor-
mation can be utilized in transformations to decide whether a restructuring op-
eration is applicable. Annotations can be introduced using several mechanisms
supported within ROSE: pragmas, comments, a separate annotation file.

3 Transformation Operators

A transformation operator consists of a pre-condition to hold (based on the
AST annotations which are computed in the analysis phase) and a restructuring
sequence which can be applied safely if the pre-condition holds. A restructuring
sequence consists of fragment operations which we shall discuss in detail.

An optimization requires an analysis of the program to determine whether the
AST can be restructured such that the semantics of the program are preserved.
For the analysis, the AST processing mechanism allows computing attributes and
fixed point algorithms for flow sensitive analysis can be applied on the control
flow graph. The analysis results are attached to the AST as annotations.

The sequence of AST restructuring operations can be computed as attributes
by the AST processing mechanism or by using an attribute grammar tool, as
demonstrated in [2]. Bottom Up Rewrite Systems (BURS), such as burg [6], can
be used to operate on the AST. The AST is implemented such that for each
node a unique number is available which can be used as operator identifier by
such tools. The opportunity to choose between traversals, the AST processing
mechanism, attribute grammar tools, or BURS tools allows selection of the most
comprehensive specification of a transformation.

The correctness of a transformation is addressed by ensuring that the se-
quence of the restructuring operations on the AST preserves the semantics of the
program. A transformation operator consists of a pre-condition to hold (based on
the AST annotations which are computed in the analysis phase) and a sequence
of restructuring operations which can be applied safely if the pre-condition holds.
A restructuring sequence consists of fragment operators, and as operands AST
fragments (subtrees), strings (concrete pieces of code), or AST locations (denot-
ing nodes in the AST).

3.1 Fragment Operators

A fragment operator allows performing a basic restructuring operation such as
insert, delete, or replace AST fragments. The target location in the AST can
be absolute or relative. The fragment to be inserted can be specified as source
fragment or AST fragment. Let AST's denote the set of ASTs, L, the set of
relative locations in an AST, L,ps the set of absolute locations, i.e. the nodes
in an AST, and S the set of valid source fragments with respect to an absolute
location in the AST. A source fragment s is valid with respect to an absolute
location, l4ps, in an AST if it can be completed to a legal program from the
syntactic and semantic context of the absolute location /,;s. From the syntactic



context the prefix, s4, is computed such that all declarations, opening scopes,
and function signatures are included in the prefix. The postfix, sy, consists of
all the syntactic entities of closing scopes (for nested scopes such as for-loops,
while-loops, function definitions, etc.). Hence, a source fragment, sn, is valid if
frontend(sq + so + s ) succeeds, i.e. all syntactic and semantic checks succeed
and a corresponding AST fragment, astg, can be generated.

|Operat0r |Descripti0n

insert : Insertion of AST fragment at relative location

Lye; X Laps X ASTs — AST's (step 4 in Fig. 2)

delete : Deletion of AST subtree at absolute location

Lgps x ASTs — AST's in AST (step 4 in Fig. 2)

fragment-frontend : Translate source fragment with respect to ab-

Lagps x ASTs x S — ASTs solute location in AST to corresponding AST
fragment (steps 3,5 in Fig. 2)

fragment-backend : Unparse AST fragment at absolute location in

Laps X ASTs — S AST to source fragment (step 5 in Fig. 2)

locate : Map relative location with respect to absolute

Lyei X Laps X ASTs — Lgps location in AST to absolute location in same
AST

replace : Replacement of AST fragment at relative lo-

Lyei X Laps x ASTs x ASTs — ASTs |cation (step 4 in Fig. 2)

replace : Replacement of AST subtree at absolute loca-

Lops X ASTs x S — AST's tion in AST by AST fragment corresponding
to source fragment (steps 3,4,5 in Fig. 2)

Fig. 3. Fragment operators which allow to modify the AST by using a relative loca-
tion, an AST fragment, or a source fragment. Transformation operators are defined as
sequence of fragment operations.

In Fig. 3.1 an overview of the most important fragment operators is given.
The fragment operators allow rewriting the AST by specifying absolute or rel-
ative target locations. A relative location [,..; allows specification of a target
location in an AST relative to an absolute location l,;s. The operator location
can map a relative location [,..; with respect to an absolute location .55 and
a given AST containing the absolute location l4;5, to another absolute location
in the same AST according to L,.. Relative locations are used to simplify the
specification of the target location of a fragment operation. For example, if a
statement can be hoisted out of a loop it suffices to specify as the target location
as the statement outside the loop-scope right before the loop. We have defined
several classifications of such relative target locations which were useful in mak-
ing transformations more compact. The insert-operation is an example of using
a relative target location. The operator fragment-frontend allows translation of
source fragments to AST fragments as explained above. It also requires step 5
to compute the necessary prefix and postfix to complete the source fragment to
eventually call the front end for the completed program. The unparsing of an



AST fragment, fragment-backend requires invoking the back end. The last op-
erator listed in Fig. 3.1, replace, allows specification of the new AST fragment,
ast, which replaces an AST subtree at location L,ps in this AST, to be specified
by a source fragment, s. This requires all three steps 3,4,5 (see Fig. 2). Step
5 is required to unparse parts of the AST to form the prefix, s4, and postfix,
ss. In Step 3 the completed source fragment is translated to an AST and the
corresponding AST fragment, ast, is extracted. Step 4 is the actual rewriting
of the AST and the replacement of the AST subtree with the new AST frag-
ment is performed. Based on this basic operations on fragments, transformation
operators can defined.

4 Predefined Optimizations

A large set of compiler optimizations, including both reordering transformations
such as loop fusion/fission and blocking, and instruction level transformations
such as redundant expression elimination, can be applied to improve the perfor-
mance of applications. Most of these optimizations are under certain safety and
profitability constraints, which in turn require specific knowledge of the involved
operations. However, because user-defined abstractions often introduce function
calls with unknown semantics into an application, many of these compiler opti-
mizations are disabled due to the unknown semantics.

In this section we present techniques that extend the applicability of prede-
fined compiler optimizations. By defining an annotation language, which allows
programmers to declare that certain abstractions satisfy the extended require-
ments of predefined compiler optimizations, we provide an open interface for the
programmers to communicate with and to control the underlying optimizations.
A preliminary version of our annotation language is shown in Figure 4(a). In the
following, we use the annotation examples in Figure 4(b) to further illustrate
the techniques.

4.1 Enabling Transformations

The most significant enabling transformations for library abstractions is inlining,
which eliminates function calls by merging the implementations of the functions
within their calling contexts. Suppose the compiler has access to all the source
code of a library, theoretically, inlining the library code could permit all necessary
program analysis and thus allow the compiler to discover/unlock the semantics
of all abstractions, dismissing the concerns for obscure function calls.

However, the current compilation techniques cannot yet fully bridge the gaps
between abstraction semantics and their implementation details. Specifically,
reading the library code exposes the underlying implementations, but does not
readily permit a discovery of the semantics, such as properties of commutativity
and associativity. As the result, we complement inlining transformations with
semantics annotations which allows library programmers to define the semantics
and control the optimizations of their abstractions.



class doubleArray:
inheritable is-array { dim = 6;
len(i) = this.getLength(i);
elem(i$x:0:dim-1) = this(i$x);
reshape(i$x:0:dim-1) = this.resize(i$x); };
has-value {dim; len$x:0,dim-1=this.getLength(x); }
operator doubleArray::operatpr =
(const doubleArray& that):
modify {this}; read {that}; alias none;
modify-array (this) {
dim = that.dim; len(i) = that.len(i);
elem(i$x:1:dim) = that.elem(i$x); };

<annot> ::= <annotl> | <annotl>;<annot>
<annotl> ::=

class <cls_annot>

| operator <op-annot>
<cls_annot> ::= <clsname>:<cls_annot1>;
<cls_annot1>::=

<cls_annot2> | <cls_annot2> <cls_annot1>
<cls_annot2>::= <arr_annot>

| inheritable <arr_annot>

| has-value { <val_def> }
<arr_annot>::= is-array{ <arr_def>}

| is-array{define{ <stmts>} <arr_def>}
<op-annot> ::= <opdecl> : <op-annotl> ;
<op-annotl> ::=

<op-annot2> | <op-annot2> <op-annotl>
<op-annot2> ::=

modify <namelist>

| new-array (<aliaslist>){<arr_def>}

| modify-array (<name>) {<arr_def>}

| restrict-value {<val_def_list>}

| read <namelist>

| alias <nameGrouplist>

| allow-alias <nameGrouplist>

| inline <expression>

modify none; read{al,a2}; alias none;
new-array () { dim = al.dim; len(i) = al.len(i);
elem(i$x:1:dim) = al.elem(i$x)+a2; };
operator doubleArray::operator ()
(const Range& 1I):
modify none; read{I}; alias { (result, this) };
restrict-value { this = { dim = 1; };
result = {dim = 1; len(0) = Llen;}; };
new-array (this) { dim = 1; len(0) = Ilen;
elem(i) = this.elem(ixI.stride + I.base); };
class Range: has-value {stride; base; len; };
operator Range::Range(int _b,int _l,int _s):

<arrdef> = modify none; read {_b,1,_s}; alias none;
<arr_attr_def> | <arr_attr_def> <arr_def> Ly o e ) oo
- - X restrict-value { this={base =_b;len=_I;stride=_s;};};
<arr_attr_def> ::= <arr_attr>=<expression>; . .
. operator doubleArray::operator() (int index) :
<arr_attr> := dim | len (<param>) inline { this.elem(index) };
| elem(<paramlist>) ) !

restrict-value { this = { dim = 1; };};
operator + (const Range& lhs, int x ) :
modify none; read {lhs,x}; alias none;
restrict-value { result={stride=lhs.stride;

len = lhs.len; base = lhs.base + x; }; };

| reshape(<paramlist>)

<val_def> ::= <name>; | <name>;<val_def>
| <name> = <expression> ;
| <name> = <expression> ; <val_def>

(a) grammar (b)example

Fig. 4. Annotation language

In our annotation language, the programmers can not only direct compil-
ers to inline certain function calls, they can also define additional properties
of their abstractions in order to enable specific predefined optimizations. As
example, the inline annotation in Figure 4 is essentially a “semantics inlin-
ing” directive for user-defined functions. It is used in Figure 4(b) for function
“double Array::operator()(int)”, which is declared as a subscripted access of the
current double Array object.

4.2 Loop Transformations

As modern computers become increasingly complex, compilers often need to
extensively reorder the computation structures of applications to achieve high
performance. One important class of such optimizations is the set of loop trans-
formation techniques, such as loop blocking, fusion/fission, and interchange, that
has long been applied to Fortran scientific applications. Within ROSE, we have
implemented several aggressive loop transformations and have extended them
for optimizing loops operating on general object-oriented user abstractions.

operator +(const doubleArray& al,double a2):
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Traditional Fortran loop transformation frameworks recognize loops operat-
ing on Fortran arrays, that is, arrays with indexed element access and with no
aliasing between different elements. After computing the dependence relations
between iterations of statements, they then reorder the loop iterations when safe
and profitable. To extend this framework, we use an array-abstraction interface
to communicate with our loop optimizer the semantics of user-defined array ab-
stractions in C++. The array-abstraction interface both recognizes user-defined
array abstractions and determines the aliasing relations between array objects.

In Figure 4(b), the is-array annotation declares that the class double Array
has the pre-defined Fortran array semantics. The array can have at most 6
dimensions, with the length of each dimension ¢ obtained by calling member
function getLength(i), and with each element of the array accessed through
the “()” operator. Here the expression i$z : 0 : dim — 1 denotes a list of pa-
rameters, i1,i2,...,igim_1. Similarly, the operator “double Array::operator= (const
double Array& that)” is declared to have modify-array semantics; that is, it per-
forms element-wise modification of the current array. The operator “+ (const
doubleArray& ay, double ay)” is declared to have the new-array semantics; that
is, it constructs a new array with the same shape as that of a;, and each element,
of the new array is the result of adding a, to the corresponding element of a;.
Similarly, the operator “double Array::operator()(const Range& I)” constructs a
new array that is aliased with the current one by selecting only those elements
that are within the iteration range I.

Because the safety of loop optimizations is determined by evaluating the side-
effects of statements, our annotation language also includes declarations regard-
ing the side-effects of function calls. Specifically, the mod annotation declares a
list of locations that might be modified by a function call, the read annotation
declares the list of locations being used, and the alias annotation declares the
groups of names that might be aliased to each other. These annotations directly
communicate with our global alias and side-effect analysis algorithms. For details
in using the annotations for loop optimizations, see [7].

4.3 Instruction Level Transformations

To generate efficient code, most compilers include instruction level optimizations
that eliminate redundant computations or replace expensive computations with
cheaper ones. The most commonly used optimizations include constant propaga-
tion, constant folding, strength reduction, redundant expression elimination, and
dead code elimination. Most of these optimizations have been applied only to
integer expressions that contain no obscure function calls, and can be extended
with annotation interfaces for optimizing high-level user-defined abstractions.
As example, we have implemented an adapted constant-propagation /folding
algorithm to automatically determine the symbolic value properties of arbitrary
user-defined objects. In Figure 4, two annotations, has-value and restrict-value,
are used to describe the properties. Specifically, has-value declares that class
doubleArray has two properties: the array dimension and the length of each di-
mension i, and that class Range has three properties, base, len and stride, for
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selecting subsets of elements from arrays. Similarly, the annotation restrict-value
declares how properties of user-defined types can be implied from function calls.
For example, if “doubleArray::operator()(int index)” is used to access the ele-
ment of an doubleArray object arr, we know that arr must have a single dimen-
sion, and it will remain single-dimensional until some other operator modifies
its shape. We have combined the symbolic property analysis with loop opti-
mizations to automatically determine the shapes of user-defined Fortran-array
abstractions. For more detail, See [7].

5 Experimental Results

This section presents some preliminary results from applying loop optimizations
to several kernels written using the A++4/P+4+ Library [8], an array class li-
brary that supports both serial and parallel array abstractions with a single
interface. We selected our kernels from the Multigrid algorithm for solving el-
liptic partial differential equations. The Multigrid algorithm consists of three
phases: relaxation, restriction, and interpolation, from which we selected both
interpolation and relaxation(specifically, red-black relaxation) on one, two, and
three dimensional problems.

Our experiments aim to validate two conclusions: our approach can signifi-
cantly improve the performance of numerical applications, and our approach is
general enough for optimizing a large class of applications using object-oriented
abstractions. The kernels we used, though small, use a real-world array abstrac-
tion library and are representative of a much broader class of numerical compu-
tations expressed using sequences of array operations. All six kernels (one, two
and three-dimensional interpolation and relaxation) benefited significantly from
our optimizations.

We generated three versions for each kernel: the original version (orig) us-
ing array abstractions, the translate-only version auto-optimized by translating
array operations into low level C implementations, and the translate+fusion ver-
sion auto-optimized both with array translation and loop fusion. As example,
Figure 5 shows the original, translate-only and translate+fusion versions for the
one-dimensional interpolation code, the simplest of all kernels. The original ver-
sions of all kernels each have 20-60 lines of code, (they look simple because
they are written using array abstractions). After translating array operations
into explicit loops, each kernel contains 2-8 loop nests which are then consid-
ered for loop optimization. Each loop nest has 1-3 dimensions, depending on the
dimensionality of the arrays being modified.

We measured all versions on a Compaq AlphaServer DS20E. Each node has
4GB memory and two 667TMHz processors. Each processor has L1 instruction
and data caches of 64KB each, and 8MB L2 cache. We used the Compaq vendor
C++ compiler with the highest level of optimization, and measured the elapsed-
time of each execution. Table 1 present our measurements using multiple array
sizes.
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void interpolatelD (floatArray& fineGrid, floatArray& coarseGrid) {
int fineGridSize = fineGrid.getLength(0), coarseGridSize = coarseGrid.getLength(0);
Range If (2,fineGridSize-2,2), Ic (1,coarseGridSize-1,1);
fineGrid(If) = coarseGrid(Ic);
fineGrid(If-1) = (coarseGrid(Ic-1) + coarseGrid(Ic)) / 2.0;

(a) original version

void interpolate1lD (floatArray& fineGrid, floatArray& coarseGrid ) {
int fineGridSize = fineGrid.getLength(0), coarseGridSize = coarseGrid.getLength(0);
Range If (2,fineGridSize-2,2), Ic (1,coarseGridSize-1,1);
float* fineGridPointer = findGrid.getPointer(), *coarseGridPointer = coarseGrid.getPointer();
for (int .i = 0; i < (fineGridSize - 3) / 2; .i +=1)
fineGridPointer[d * 2 + 2] = coarseGridPointer[i + 1];
for (int _j = 0; j < (fineGridSize - 3) / 2; jj +=1)
fineGridPointer[j * 2 + 1] = coarseGrid[j] + coarseGridPointer[j + 1] / 2.0;
}

(b) translating array operations only

void interpolatelD (floatArray& fineGrid, float Array& coarseGrid ) {
int fineGridSize = fineGrid.getLength(0), coarseGridSize = coarseGrid.getLength(0);
Range If (2,fineGridSize-2,2), Ic (1,coarseGridSize-1,1);
float* fineGridPointer = findGrid.getPointer(), *coarseGridPointer = coarseGrid.getPointer();
for (int .i = 0; i < (fineGridSize - 3) / 2; .i +=1)
fineGridPointer[d * 2 + 2] = coarseGridPoiner[i + 1];
fineGridPointer[_j * 2 4+ 1] = coarseGridPointer[_j| + coarseGridPointer[_j + 1] / 2.0;

}

(c) translating array operations + loop fusion

Fig. 5. Example: 1D interpolation

From Table 1(a), in nearly all cases the translation of the array abstractions
results in significant improvements. But applying loop fusion improves the per-
formance further by 20%-75%. This validates our belief that loop optimization
is a significant step further toward fully recovering the performance penalty of
using high-level array abstractions.

From Table 1(b), the dominate performance improvements come from trans-
lating array abstractions into low-level implementations(¢ranslate-only). Loop fu-
sion can further improve performance by 2.3-6.5 times for one and two-dimensional
relaxation kernels, but for three-dimensional relaxation, it showed only slight im-
provement (5%) for small arrays(50) and degraded performance (up to 20%) for
large arrays. Here the performance degradation is due to increased register pres-
sures from the much larger fused loop bodies in the three-dimensional case. We
are working on better algorithms to selectively apply loop fusion.

The final codes generated by our optimizer are very similar to the corre-
sponding C programs that programmers would manually write. Consequently,
we believe that their performance would also be similar. Further, because pro-
grammers usually don’t go out-of-the-way in applying loop optimizations, our
techniques can sometimes perform better than hand-written code. This is espe-
cially true for the red-black relaxation kernels, where the original loops need to
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(a) Interpolation results
Interp1D Interp2D Interp3D
array| orig [transla|translate|fusion| orig [transla|translate|fusion| orig [transla|translate|fusion
size | (sec) |te only|+ fusion| only | (sec) |te only|+ fusion| only | (sec) |te only|+ fusion| only
50 |4.833| 1.915 2.131 |1.113|7.000 | 3.034 3.932 |1.296(9.166 | 2.497 3.184 |1.275
75 | 5.000 | 4.142 4.519 |1.091|7.000 | 2.766 3.131 |1.132(9.333 | 3.021 3.813 |1.262
100 | 5.333 | 2.593 2.899 |1.118 | 7.000 | 2.753 3.247 |1.179(9.333 | 2.929 3.767 |1.286
125 | 7.666 | 2.853 4.228 1.48219.833 | 3.304 3.882 1.175]10.666( 3.214 4.442 1.382
150 [ 9.166 | 2.390 4.214 1.763|11.166| 2.897 4.542 1.568 |12.333| 2.871 4.189 1.459
175 |11.366| 2.630 4.618 |1.756 (12.833| 2.893 4.964 |1.716 (15.766| 3.403 5.264 | 1.547
200 |11.000| 2.419 4.289 |1.773(14.799| 3.161 5.348 |1.692(13.799| 2.514 4.211 |1.675

(b) Red-black relaxation results
RedBlack1D RedBlack2D RedBlack3D
array| orig [transla|translate|fusion| orig [transla|translate|fusion| orig [transla|translate|fusion
size | (sec) |te only|+ fusion| only | (sec) |te only|+ fusion| only | (sec) |te only|+ fusion| only
50 [11.500( 2.178 5.338 2.451 [17.166| 1.650 3.344 |2.026 (22.499| 3.260 3.445 1.057
75 [14.999| 1.728 6.692 |3.872(16.666| 1.627 3.280 |2.016 (27.332| 3.938 3.776 ]0.959
100 |26.166| 3.540 | 11.852 |3.348 [32.165| 2.672 5.146 |1.926 [35.665| 4.744 4.176 ]0.880
125 (32.499| 1.960 | 12.327 |6.289 (41.498| 2.418 4.421 1.828 |45.998( 4.685 3.895 |0.831
150 [35.165| 2.865 | 13.885 |4.847 |46.665| 2.134 4.643 |2.176|53.498| 5.272 4.440 |0.842
175 [38.132] 2.344 | 15.270 |6.513 |52.065| 2.514 5.378 |2.140|64.531| 6.238 5.701 |0.914
200 |38.598( 3.125 | 15.117 [4.838(53.398| 2.501 6.117 |2.446 (67.797| 6.703 5.384 ]0.803

Table 1. Performance results (orig: elapsed time of original versions written using
array abstractions different numbers of iterations were run for different problem
sizes; translate-only: speedups from translating array abstractions into low-level C im-
plementations; translate+fusion: speedups from both array translation and loop fusion;
fusion-only: speedups from applying loop fusion alone. )

be re-aligned before fusion and a later loop-splitting step is necessary to remove
conditionals inside the fused loop nests. Such complex transformations are much
more easily applied automatically by compilers than manually by programmers.

6 Related Work

Related work on the optimization of libraries in telescoping languages [9] shares
similar goals as our research. The SUIF compiler [10] and OpenC++ [11] each
provided a programmable level of control over the compilation of applications
in support of optimizing user-defined abstractions. The Broadway compiler [12]
uses general annotation languages to guide source code optimizations. Within
ROSE, we provide both an open compiler infrastructure for programmers to
define their own optimizations and a collection of annotation mechanisms for
programmers to exploit predefined traditional compiler optimizations. Template
Meta-Programming[13,14] has also been used to optimize user-defined abstrac-
tions, but is effective only when optimizations are isolated within a single state-
ment. Optimizations across statements, such as loop fusion, is beyond the capa-
bilities of template meta-programming.

A rich set of compiler optimization techniques have been developed to im-
prove the performance of applications, including a collection of loop transforma-
tions. These transformations by default can only optimize operations on prim-
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itive types, whose semantics are known by the compilers. To extend these op-
timizations to user-defined abstractions, Wu, Midkiff, Moreira and Gupta [15]
proposed semantic inlining, which treats specific user-defined types as primitive
types in Java. Artigas, Gupta, Midkiff and Moreira [16] devised an alias ver-
sioning transformation that creates alias-free regions in Java programs so that
loop optimizations can be applied to Java primitive arrays and the array ab-
stractions from their library. Wu and Padua [17] investigated automatically par-
allelization of loops operating on user-defined containers, but assumed that their
compiler knew about the semantics of all operators. All the above approaches
apply compiler techniques to optimize library abstractions. However, by encod-
ing the knowledge within their compilers, these specialized compilers cannot be
used to optimize abstractions in general other than those in their libraries. In
contrast, we target optimizing general user-defined abstractions by allowing pro-
grammers to classify their abstractions and to explicitly communicate semantics
information with the compiler.

7 Conclusions

User-defined abstractions are productive in the development of application codes,
but the abstraction penalty is often not acceptable for scientific computing. We
have presented an approach that allows to reduce this penalty such that the per-
formance of user-defined abstractions becomes acceptable for high-performance
computing, allowing to use these abstractions to achieve higher productivity in
the development of scientific applications.

We have demonstrated that leveraging semantics of user-defined abstrac-
tions can provide significant opportunities for our optimizations and identified
an annotation approach to specify relevant user-defined semantics. Using these
annotations, we built an automated transformation approach greatly simplify-
ing the otherwise explicit specification of program transformations using more
traditional approaches (such as the other mechanisms in ROSE). The evaluation
was performed using an array abstraction. We expect that additional research
work on the classification of general abstractions will lead to a more useful and
practical optimization approach tailored to the domain specific optimization op-
portunities of user-defined abstractions.
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