
Classi�ation and Utilization of Abstrations forOptimizationDan Quinlan1, Markus Shordan2, Qing Yi1, and Andreas Saebjornsen31Lawrene Livermore National Laboratory, USAfdquinlan, yi4g�llnl.gov2Vienna University of Tehnologymarkus�omplang.tuwien.a.at3University of Oslo, Norwayandreas.sabjornsen�fys.uio.noAbstrat. We de�ne a novel approah for optimizing the use of librarieswithin appliations. We propose that library-de�ned abstrations be las-si�ed to support their automated optimization and by leveraging theseadditional semantis we enable the library spei� optimization of appli-ation odes. We believe that suh an approah entails the use of formalmethods.We desribe ROSE, a framework for building soure-to-soure transla-tors, used for the high-level optimization of sienti� appliations. It isa ommon pereption that performane is inversely proportional to thelevel of abstration. Our work shows that this is not the ase if theadditional semantis of library-de�ned abstrations an be leveraged.ROSE allows the reognition of suh abstrations and the optimizationof their use in appliations. We show how ROSE an be used to uti-lize the additional semantis within the ompile-time optimization andpresent promising results.1 IntrodutionUser-de�ned high-level abstrations are produtive in the development of appli-ation odes. Unfortunately the use of high-level abstrations usually introduesa penalty in performane due to indiretion, insuÆient global optimizationsof ompilers, or the lak of program analysis to infer high-level semantis andproperties of user-de�ned abstrations within aeptable time bounds. Suh lakof information about semantis of user-de�ned abstrations in libraries disal-lows to perform optimizations of appliation odes using the library's providedabstrations.If an optimization is known for a user-de�ned abstration but the requiredproperties of this abstration for guaranteeing the orretness of the optimizationannot be established, we fae a (known) performane penalty beause the moreeÆient version of the ode is not generated. Suh a transformation an bearried out manually but this learly redues produtivity beause it would also

2require to maintain the manually optimized ode. Our approah aims at fullyautomating suh optimizations.We bridge the gap of unknown high-level semantis by providing additionalinformation through annotations. This additional information is used to enableoptimizations spei� to user-de�ned abstrations. We present a ompile-timeapproah for the optimization of sienti� appliations using the semantis oflibrary abstrations and demonstrate the approah toward the de�nition of an-notations for abstrations using a spei� abstration. The abstration hosenfor optimization in our example is an array abstration ontained within an arraylass library whih is used in our sienti� appliations.Given appropriate annotations and transformations, the mehanisms we presentto optimize high-level abstrations are suÆient to optimize arbitrary abstra-tions. Thus we have addressed numerous aspets of the more general problemwithin the urrent work. Many aspets of future work will depend upon eithermanual or automated generation of annotations, to lassify the semanti proper-ties of general abstrations. We desribes the onrete work that has been doneto develop an annotation based approah to guide the automated optimizationof high-level abstrations, starting with a motivating example.1.1 Motivating ExampleFigure 1 shows an example of a high-level abstration. It is an array abstrationwhih is used within our urrent sienti� appliations and therefore forms anattrative example problem.The lass Range allows to de�ne integer ranges with a �xed stride for it-erating, and a lass doubleArray where Range objets serve as parameters toseveral funtions for iterating on an array. In the example main funtion, weshow how these lasses an be used to ompute a new value for eah point inthe array. The user-de�ned types Range and doubleArray allow to de�ne suha omputation without the use of any loop onstruts in the appliation ode.Using suh lasses, the user is freed from the burden of writing loops for eahdimension of an array. In the example we use a two-dimensional array with typedouble as element type.The funtion \main" onsists of four lines. In line 2 two arrays A and B, eahof size 100x100, are reated. In line 3 Range objets, de�ning ranges from 1 to98 with stride 1 are reated. Index 0 and 100 are not used in the example. Inline 4 the omputation is de�ned. For eah point within the spei�ed ranges, anew value is omputed on the right hand side as the sum of the four neighborsin horizontal and vertial diretion. In general, an arbitrary expression an bespei�ed on the right hand side, in partiular using the operators available inthe lass doubleArray. In this simple example we have restrited the availablefuntions to \+" and \sin". The full lass onsists of about 80 di�erent operators.For our optimizations it is relevant how the iterations are performed on thearray, whether the array points are read-only or modi�ed, and whether aliasesare used to express sharing of data strutures. For optimizations on the loweredode it is relevant whih iterations an be ombined into fused loops. We shall

3show how suh properties an be spei�ed using our annotation language insetion 4.lass Range {publi:Range (int base, int bound, int stride);Range operator+ (int i);Range operator- (int i);};lass doubleArray {publi:doubleArray (int i, int j);doubleArray & operator= (onst doubleArray & X);friend doubleArray operator+ (onst doubleArray & X, onst doubleArray & Y);doubleArray operator() (onst Range & I, onst Range & J);friend doubleArray & sin (onst doubleArray & X);};int main () { /* 1 */doubleArray A(100,100), B(100,100); /* 2 */Range I(1,98,1), J(1,98,1); /* 3 */A(I,J) = B(I-1,J) + B(I+1,J) + B(I,J-1) + B(I,J+1); /* 4 */} Fig. 1. Example: Snippet of header �le and program to be optimized.In the remaining setions we present the ROSE[1, 2℄ arhiteture used forimplementing the presented approah, the annotation based mehanism for theoptimization of array abstrations, an example problem and performane resultsshowing the signi�ant potential for suh optimizations.2 ArhitetureThe ROSE infrastruture o�ers several omponents to build a soure-to-soureoptimizer. A omplete C++ front end is available that generates an objet-oriented annotated abstrat syntax tree (AST) as an intermediate representa-tion. Optimizations are performed on the AST. Several omponents an be usedto build the mid end: a prede�ned traversal mehanism, an attribute evaluationmehanism, transformation operators to restruture the AST, and pre-de�nedoptimizations. Support for library annotations is available by analyzing prag-mas, omments, or separate annotation �les. A C++ bak end an be used tounparse the AST and generate C++ ode. An overview of the arhiteture isshown in Fig. 2). Steps 1-7, whih an be performed by a ROSE soure-to-soureoptimizer, are desribed in the following setions.2.1 Front EndWe use the Edison Design Group C++ front end (EDG) [3℄ to parse C++ pro-grams. The EDG front end generates an AST and performs a full type evaluationof the C++ program. This AST is represented as a C data struture. We trans-late this data struture into an objet-oriented abstrat syntax tree, Sage III,

4
AST processing
Traversal and attribute computation

Query operators
mode: AST readonly

Transformation operators
mode: AST read/write

Front End

Back End

Middle End

Source fragment
AST fragment

AST fragment

AST fragment
Source fragment

Application

AST

AST

Optimized application

(1)

(2)
(3)

(3)

(4)

(5)
(5)

(6)

(7)

Annotated library interface(1)

Fig. 2. ROSE Soure-To-Soure arhiteturebased on Sage II and Sage++[4℄. Sage III is used by the mid end as intermedi-ate representation. The annotated library interfaes are header �les whih areinluded by the appliation program. The AST passed to the mid end representsthe program and all the header �les inluded by the program (see Fig. 2, step 1and 2).2.2 Mid EndThe mid end allows the restruturing of the AST and performane improvingprogram transformations. Results of program analysis are made available as an-notations of AST nodes. The AST proessing mehanism allows omputationof inherited and synthesized attributes on the AST (see setion 2.4 for moredetails). ROSE also inludes a sanner whih operates on the token stream of aserialized AST so that parser tools an be used to speify program transforma-tions in semanti ations of an attribute grammar. The grammar is the abstratgrammar, generating the set of all ASTs. More details on the use of attributegrammar tools, in partiular Coo/R [5℄ and Frankie Erse's C/C++ port, anbe found in [2℄.An AST restruturing operation spei�es a loation in the AST where odeshould be inserted, deleted, or replaed. Transformation operators an be built

5by using the AST proessing mehanism in ombination with AST restruturingoperations. In Fig. 2 steps 3,4,5 show how the ROSE arhiteture also allowsusing soure ode fragments and AST fragments in the spei�ation of pro-gram transformations. A fragment is a onrete piee of ode or AST. A pro-gram transformation is de�ned by a sequene of AST restruturing operationswhereas transformation operators ompute suh restruturing sequenes. Trans-formations an be parameterized to de�ne onditional restruturing sequenes.This is disussed in detail in setion 3.2.3 Bak EndThe bak end unparses the AST and generates C++ soure ode (see Fig. 3,steps 6 and 7). It an be spei�ed to unparse either all inluded (header) �les oronly the soure �le(s) spei�ed on the ommand line. This feature is importantwhen transforming user-de�ned data types, for example, when adding generatedmethods. Comments are attahed to AST nodes and unparsed by the bak end.2.4 AST ProessingThe AST proessing omponents allow traversing the AST and omputing at-tributes for eah node of the AST. The omputed values of attributes an beattahed to AST nodes as annotations and used in subsequent optimizations.Context information an be passed down the AST as inherited attributes andresults of omputations on a subtree an be omputed as synthesized attributes(passing information upwards in the tree). Examples for values of inherited andsynthesized attributes are the nesting level of loops, the sopes of assoiatedpragma statements, et. These annotations an be used in transformations todeide whether a restruturing operation an be applied safely. AST proessingis used by query operators and transformation operators to ompute informa-tion aording to the struture of the AST and an also be based on annotationsomputed by other operators. This allows building omplex high-level transfor-mation operators from lower-level transformation operators.2.5 AST Query OperatorsBuilding on top of the methods in setion 2.4, AST query operators are providedthat perform numerous types of prede�ned queries on the AST. AST queryoperators may be omposed to de�ne omplex queries. This mehanism hidessome of the details of the AST traversal and is simple and extensible.2.6 AST AnnotationsThe annotations of the AST onsist of type information obtained from the EDGfront end and user-de�ned attributes whih allow attahing results of attributeomputations to AST nodes. These results an be aessed by subsequent AST

6proessing steps and allow the omposition of di�erent AST operators. Anno-tations an also speify additional semanti information. This additional infor-mation an be utilized in transformations to deide whether a restruturing op-eration is appliable. Annotations an be introdued using several mehanismssupported within ROSE: pragmas, omments, a separate annotation �le.3 Transformation OperatorsA transformation operator onsists of a pre-ondition to hold (based on theAST annotations whih are omputed in the analysis phase) and a restruturingsequene whih an be applied safely if the pre-ondition holds. A restruturingsequene onsists of fragment operations whih we shall disuss in detail.An optimization requires an analysis of the program to determine whether theAST an be restrutured suh that the semantis of the program are preserved.For the analysis, the AST proessing mehanism allows omputing attributes and�xed point algorithms for ow sensitive analysis an be applied on the ontrolow graph. The analysis results are attahed to the AST as annotations.The sequene of AST restruturing operations an be omputed as attributesby the AST proessing mehanism or by using an attribute grammar tool, asdemonstrated in [2℄. Bottom Up Rewrite Systems (BURS), suh as burg [6℄, anbe used to operate on the AST. The AST is implemented suh that for eahnode a unique number is available whih an be used as operator identi�er bysuh tools. The opportunity to hoose between traversals, the AST proessingmehanism, attribute grammar tools, or BURS tools allows seletion of the mostomprehensive spei�ation of a transformation.The orretness of a transformation is addressed by ensuring that the se-quene of the restruturing operations on the AST preserves the semantis of theprogram. A transformation operator onsists of a pre-ondition to hold (based onthe AST annotations whih are omputed in the analysis phase) and a sequeneof restruturing operations whih an be applied safely if the pre-ondition holds.A restruturing sequene onsists of fragment operators, and as operands ASTfragments (subtrees), strings (onrete piees of ode), or AST loations (denot-ing nodes in the AST).3.1 Fragment OperatorsA fragment operator allows performing a basi restruturing operation suh asinsert, delete, or replae AST fragments. The target loation in the AST anbe absolute or relative. The fragment to be inserted an be spei�ed as sourefragment or AST fragment. Let ASTs denote the set of ASTs, Lrel the set ofrelative loations in an AST, Labs the set of absolute loations, i.e. the nodesin an AST, and S the set of valid soure fragments with respet to an absoluteloation in the AST. A soure fragment s is valid with respet to an absoluteloation, labs, in an AST if it an be ompleted to a legal program from thesyntati and semanti ontext of the absolute loation labs. From the syntati

7ontext the pre�x, s�, is omputed suh that all delarations, opening sopes,and funtion signatures are inluded in the pre�x. The post�x, s�, onsists ofall the syntati entities of losing sopes (for nested sopes suh as for-loops,while-loops, funtion de�nitions, et.). Hene, a soure fragment, s2, is valid iffrontend(s� + s2+ s�) sueeds, i.e. all syntati and semanti heks sueedand a orresponding AST fragment, ast2, an be generated.Operator Desriptioninsert :Lrel � Labs �ASTs! ASTs Insertion of AST fragment at relative loation(step 4 in Fig. 2)delete :Labs �ASTs! ASTs Deletion of AST subtree at absolute loationin AST (step 4 in Fig. 2)fragment-frontend :Labs �ASTs� S ! ASTs Translate soure fragment with respet to ab-solute loation in AST to orresponding ASTfragment (steps 3,5 in Fig. 2)fragment-bakend :Labs �ASTs! S Unparse AST fragment at absolute loation inAST to soure fragment (step 5 in Fig. 2)loate :Lrel � Labs �ASTs! Labs Map relative loation with respet to absoluteloation in AST to absolute loation in sameASTreplae :Lrel � Labs �ASTs�ASTs! ASTs Replaement of AST fragment at relative lo-ation (step 4 in Fig. 2)replae :Labs �ASTs� S ! ASTs Replaement of AST subtree at absolute loa-tion in AST by AST fragment orrespondingto soure fragment (steps 3,4,5 in Fig. 2)Fig. 3. Fragment operators whih allow to modify the AST by using a relative loa-tion, an AST fragment, or a soure fragment. Transformation operators are de�ned assequene of fragment operations.In Fig. 3.1 an overview of the most important fragment operators is given.The fragment operators allow rewriting the AST by speifying absolute or rel-ative target loations. A relative loation lrel allows spei�ation of a targetloation in an AST relative to an absolute loation labs. The operator loationan map a relative loation lrel with respet to an absolute loation labs anda given AST ontaining the absolute loation labs, to another absolute loationin the same AST aording to Lrel. Relative loations are used to simplify thespei�ation of the target loation of a fragment operation. For example, if astatement an be hoisted out of a loop it suÆes to speify as the target loationas the statement outside the loop-sope right before the loop. We have de�nedseveral lassi�ations of suh relative target loations whih were useful in mak-ing transformations more ompat. The insert-operation is an example of usinga relative target loation. The operator fragment-frontend allows translation ofsoure fragments to AST fragments as explained above. It also requires step 5to ompute the neessary pre�x and post�x to omplete the soure fragment toeventually all the front end for the ompleted program. The unparsing of an

8AST fragment, fragment-bakend requires invoking the bak end. The last op-erator listed in Fig. 3.1, replae, allows spei�ation of the new AST fragment,ast, whih replaes an AST subtree at loation Labs in this AST, to be spei�edby a soure fragment, s. This requires all three steps 3,4,5 (see Fig. 2). Step5 is required to unparse parts of the AST to form the pre�x, s�, and post�x,s�. In Step 3 the ompleted soure fragment is translated to an AST and theorresponding AST fragment, ast, is extrated. Step 4 is the atual rewritingof the AST and the replaement of the AST subtree with the new AST frag-ment is performed. Based on this basi operations on fragments, transformationoperators an de�ned.4 Prede�ned OptimizationsA large set of ompiler optimizations, inluding both reordering transformationssuh as loop fusion/�ssion and bloking, and instrution level transformationssuh as redundant expression elimination, an be applied to improve the perfor-mane of appliations. Most of these optimizations are under ertain safety andpro�tability onstraints, whih in turn require spei� knowledge of the involvedoperations. However, beause user-de�ned abstrations often introdue funtionalls with unknown semantis into an appliation, many of these ompiler opti-mizations are disabled due to the unknown semantis.In this setion we present tehniques that extend the appliability of prede-�ned ompiler optimizations. By de�ning an annotation language, whih allowsprogrammers to delare that ertain abstrations satisfy the extended require-ments of prede�ned ompiler optimizations, we provide an open interfae for theprogrammers to ommuniate with and to ontrol the underlying optimizations.A preliminary version of our annotation language is shown in Figure 4(a). In thefollowing, we use the annotation examples in Figure 4(b) to further illustratethe tehniques.4.1 Enabling TransformationsThe most signi�ant enabling transformations for library abstrations is inlining,whih eliminates funtion alls by merging the implementations of the funtionswithin their alling ontexts. Suppose the ompiler has aess to all the soureode of a library, theoretially, inlining the library ode ould permit all neessaryprogram analysis and thus allow the ompiler to disover/unlok the semantisof all abstrations, dismissing the onerns for obsure funtion alls.However, the urrent ompilation tehniques annot yet fully bridge the gapsbetween abstration semantis and their implementation details. Spei�ally,reading the library ode exposes the underlying implementations, but does notreadily permit a disovery of the semantis, suh as properties of ommutativityand assoiativity. As the result, we omplement inlining transformations withsemantis annotations whih allows library programmers to de�ne the semantisand ontrol the optimizations of their abstrations.

9<annot> ::= <annot1> j <annot1>;<annot><annot1> ::=lass <ls annot>j operator <op annot><ls annot> ::= <lsname>:<ls annot1>;<ls annot1>::=<ls annot2> j <ls annot2> <ls annot1><ls annot2>::= <arr annot>j inheritable <arr annot>j has-value f <val def> g<arr annot>::= is-arrayf <arr def>gj is-arrayfde�nef<stmts>g<arr def>g<op annot> ::= <opdel> : <op annot1> ;<op annot1> ::=<op annot2> j <op annot2> <op annot1><op annot2> ::=modify <namelist>j new-array (<aliaslist>)f<arr def>gj modify-array (<name>) f<arr def>gj restrit-value f<val def list>gj read <namelist>j alias <nameGrouplist>j allow-alias <nameGrouplist>j inline <expression><arr def> ::=<arr attr def> j <arr attr def> <arr def><arr attr def> ::= <arr attr>=<expression>;<arr attr> ::= dim j len (<param>)j elem(<paramlist>)j reshape(<paramlist>)<val def> ::= <name>; j <name>;<val def>j <name> = <expression> ;j <name> = <expression> ; <val def>(a) grammar

lass doubleArray:inheritable is-array f dim = 6;len(i) = this.getLength(i);elem(i$x:0:dim-1) = this(i$x);reshape(i$x:0:dim-1) = this.resize(i$x); g;has-value fdim; len$x:0,dim-1=this.getLength(x); goperator doubleArray::operatpr =(onst doubleArray& that):modify fthisg; read fthatg; alias none;modify-array (this) fdim = that.dim; len(i) = that.len(i);elem(i$x:1:dim) = that.elem(i$x); g;operator +(onst doubleArray& a1,double a2):modify none; readfa1,a2g; alias none;new-array () f dim = a1.dim; len(i) = a1.len(i);elem(i$x:1:dim) = a1.elem(i$x)+a2; g;operator doubleArray::operator ()(onst Range& I):modify none; readfIg; alias f (result, this) g;restrit-value f this = f dim = 1; g;result = fdim = 1; len(0) = I.len;g; g;new-array (this) f dim = 1; len(0) = I.len;elem(i) = this.elem(i�I.stride + I.base); g;lass Range: has-value fstride; base; len; g;operator Range::Range(int b,int l,int s):modify none; read f b, l, sg; alias none;restrit-value f this=fbase = b;len= l;stride= s;g;g;operator doubleArray::operator() (int index) :inline f this.elem(index) g;restrit-value f this = f dim = 1; g;g;operator + (onst Range& lhs, int x) :modify none; read flhs,xg; alias none;restrit-value f result=fstride=lhs.stride;len = lhs.len; base = lhs.base + x; g;g;(b)exampleFig. 4. Annotation languageIn our annotation language, the programmers an not only diret ompil-ers to inline ertain funtion alls, they an also de�ne additional propertiesof their abstrations in order to enable spei� prede�ned optimizations. Asexample, the inline annotation in Figure 4 is essentially a \semantis inlin-ing" diretive for user-de�ned funtions. It is used in Figure 4(b) for funtion\doubleArray::operator()(int)", whih is delared as a subsripted aess of theurrent doubleArray objet.4.2 Loop TransformationsAs modern omputers beome inreasingly omplex, ompilers often need toextensively reorder the omputation strutures of appliations to ahieve highperformane. One important lass of suh optimizations is the set of loop trans-formation tehniques, suh as loop bloking, fusion/�ssion, and interhange, thathas long been applied to Fortran sienti� appliations. Within ROSE, we haveimplemented several aggressive loop transformations and have extended themfor optimizing loops operating on general objet-oriented user abstrations.

10 Traditional Fortran loop transformation frameworks reognize loops operat-ing on Fortran arrays, that is, arrays with indexed element aess and with noaliasing between di�erent elements. After omputing the dependene relationsbetween iterations of statements, they then reorder the loop iterations when safeand pro�table. To extend this framework, we use an array-abstration interfaeto ommuniate with our loop optimizer the semantis of user-de�ned array ab-strations in C++. The array-abstration interfae both reognizes user-de�nedarray abstrations and determines the aliasing relations between array objets.In Figure 4(b), the is-array annotation delares that the lass doubleArrayhas the pre-de�ned Fortran array semantis. The array an have at most 6dimensions, with the length of eah dimension i obtained by alling memberfuntion getLength(i), and with eah element of the array aessed throughthe \()" operator. Here the expression i$x : 0 : dim � 1 denotes a list of pa-rameters, i1,i2,...,idim�1. Similarly, the operator \doubleArray::operator= (onstdoubleArray& that)" is delared to have modify-array semantis; that is, it per-forms element-wise modi�ation of the urrent array. The operator \+(onstdoubleArray& a1, double a2)" is delared to have the new-array semantis; thatis, it onstruts a new array with the same shape as that of a1, and eah elementof the new array is the result of adding a2 to the orresponding element of a1.Similarly, the operator \doubleArray::operator()(onst Range& I)" onstruts anew array that is aliased with the urrent one by seleting only those elementsthat are within the iteration range I .Beause the safety of loop optimizations is determined by evaluating the side-e�ets of statements, our annotation language also inludes delarations regard-ing the side-e�ets of funtion alls. Spei�ally, the mod annotation delares alist of loations that might be modi�ed by a funtion all, the read annotationdelares the list of loations being used, and the alias annotation delares thegroups of names that might be aliased to eah other. These annotations diretlyommuniate with our global alias and side-e�et analysis algorithms. For detailsin using the annotations for loop optimizations, see [7℄.4.3 Instrution Level TransformationsTo generate eÆient ode, most ompilers inlude instrution level optimizationsthat eliminate redundant omputations or replae expensive omputations withheaper ones. The most ommonly used optimizations inlude onstant propaga-tion, onstant folding, strength redution, redundant expression elimination, anddead ode elimination. Most of these optimizations have been applied only tointeger expressions that ontain no obsure funtion alls, and an be extendedwith annotation interfaes for optimizing high-level user-de�ned abstrations.As example, we have implemented an adapted onstant-propagation/foldingalgorithm to automatially determine the symboli value properties of arbitraryuser-de�ned objets. In Figure 4, two annotations, has-value and restrit-value,are used to desribe the properties. Spei�ally, has-value delares that lassdoubleArray has two properties: the array dimension and the length of eah di-mension i, and that lass Range has three properties, base, len and stride, for

11seleting subsets of elements from arrays. Similarly, the annotation restrit-valuedelares how properties of user-de�ned types an be implied from funtion alls.For example, if \doubleArray::operator()(int index)" is used to aess the ele-ment of an doubleArray objet arr, we know that arr must have a single dimen-sion, and it will remain single-dimensional until some other operator modi�esits shape. We have ombined the symboli property analysis with loop opti-mizations to automatially determine the shapes of user-de�ned Fortran-arrayabstrations. For more detail, See [7℄.5 Experimental ResultsThis setion presents some preliminary results from applying loop optimizationsto several kernels written using the A++/P++ Library [8℄, an array lass li-brary that supports both serial and parallel array abstrations with a singleinterfae. We seleted our kernels from the Multigrid algorithm for solving el-lipti partial di�erential equations. The Multigrid algorithm onsists of threephases: relaxation, restrition, and interpolation, from whih we seleted bothinterpolation and relaxation(spei�ally, red-blak relaxation) on one, two, andthree dimensional problems.Our experiments aim to validate two onlusions: our approah an signi�-antly improve the performane of numerial appliations, and our approah isgeneral enough for optimizing a large lass of appliations using objet-orientedabstrations. The kernels we used, though small, use a real-world array abstra-tion library and are representative of a muh broader lass of numerial ompu-tations expressed using sequenes of array operations. All six kernels (one, twoand three-dimensional interpolation and relaxation) bene�ted signi�antly fromour optimizations.We generated three versions for eah kernel: the original version (orig) us-ing array abstrations, the translate-only version auto-optimized by translatingarray operations into low level C implementations, and the translate+fusion ver-sion auto-optimized both with array translation and loop fusion. As example,Figure 5 shows the original, translate-only and translate+fusion versions for theone-dimensional interpolation ode, the simplest of all kernels. The original ver-sions of all kernels eah have 20-60 lines of ode, (they look simple beausethey are written using array abstrations). After translating array operationsinto expliit loops, eah kernel ontains 2-8 loop nests whih are then onsid-ered for loop optimization. Eah loop nest has 1-3 dimensions, depending on thedimensionality of the arrays being modi�ed.We measured all versions on a Compaq AlphaServer DS20E. Eah node has4GB memory and two 667MHz proessors. Eah proessor has L1 instrutionand data ahes of 64KB eah, and 8MB L2 ahe. We used the Compaq vendorC++ ompiler with the highest level of optimization, and measured the elapsed-time of eah exeution. Table 1 present our measurements using multiple arraysizes.

12void interpolate1D (oatArray& �neGrid, oatArray& oarseGrid) fint �neGridSize = �neGrid.getLength(0), oarseGridSize = oarseGrid.getLength(0);Range If (2,�neGridSize-2,2), I (1,oarseGridSize-1,1);�neGrid(If) = oarseGrid(I);�neGrid(If-1) = (oarseGrid(I-1) + oarseGrid(I)) / 2.0;g (a) original versionvoid interpolate1D (oatArray& �neGrid, oatArray& oarseGrid) fint �neGridSize = �neGrid.getLength(0), oarseGridSize = oarseGrid.getLength(0);Range If (2,�neGridSize-2,2), I (1,oarseGridSize-1,1);oat* �neGridPointer = �ndGrid.getPointer(), *oarseGridPointer = oarseGrid.getPointer();for (int i = 0; i < (�neGridSize - 3) / 2; i += 1)�neGridPointer[i * 2 + 2℄ = oarseGridPointer[i + 1℄;for (int j = 0; j < (�neGridSize - 3) / 2; j += 1)�neGridPointer[j * 2 + 1℄ = oarseGrid[j℄ + oarseGridPointer[j + 1℄ / 2.0;g (b) translating array operations onlyvoid interpolate1D (oatArray& �neGrid, oatArray& oarseGrid) fint �neGridSize = �neGrid.getLength(0), oarseGridSize = oarseGrid.getLength(0);Range If (2,�neGridSize-2,2), I (1,oarseGridSize-1,1);oat* �neGridPointer = �ndGrid.getPointer(), *oarseGridPointer = oarseGrid.getPointer();for (int i = 0; i < (�neGridSize - 3) / 2; i += 1)�neGridPointer[i * 2 + 2℄ = oarseGridPoiner[i + 1℄;�neGridPointer[j * 2 + 1℄ = oarseGridPointer[j℄ + oarseGridPointer[j + 1℄ / 2.0;g () translating array operations + loop fusionFig. 5. Example: 1D interpolationFrom Table 1(a), in nearly all ases the translation of the array abstrationsresults in signi�ant improvements. But applying loop fusion improves the per-formane further by 20%-75%. This validates our belief that loop optimizationis a signi�ant step further toward fully reovering the performane penalty ofusing high-level array abstrations.From Table 1(b), the dominate performane improvements ome from trans-lating array abstrations into low-level implementations(translate-only). Loop fu-sion an further improve performane by 2.3-6.5 times for one and two-dimensionalrelaxation kernels, but for three-dimensional relaxation, it showed only slight im-provement (5%) for small arrays(50) and degraded performane (up to 20%) forlarge arrays. Here the performane degradation is due to inreased register pres-sures from the muh larger fused loop bodies in the three-dimensional ase. Weare working on better algorithms to seletively apply loop fusion.The �nal odes generated by our optimizer are very similar to the orre-sponding C programs that programmers would manually write. Consequently,we believe that their performane would also be similar. Further, beause pro-grammers usually don't go out-of-the-way in applying loop optimizations, ourtehniques an sometimes perform better than hand-written ode. This is espe-ially true for the red-blak relaxation kernels, where the original loops need to

13(a) Interpolation resultsInterp1D Interp2D Interp3Darray orig transla translate fusion orig transla translate fusion orig transla translate fusionsize (se) te only + fusion only (se) te only + fusion only (se) te only + fusion only50 4.833 1.915 2.131 1.113 7.000 3.034 3.932 1.296 9.166 2.497 3.184 1.27575 5.000 4.142 4.519 1.091 7.000 2.766 3.131 1.132 9.333 3.021 3.813 1.262100 5.333 2.593 2.899 1.118 7.000 2.753 3.247 1.179 9.333 2.929 3.767 1.286125 7.666 2.853 4.228 1.482 9.833 3.304 3.882 1.175 10.666 3.214 4.442 1.382150 9.166 2.390 4.214 1.763 11.166 2.897 4.542 1.568 12.333 2.871 4.189 1.459175 11.366 2.630 4.618 1.756 12.833 2.893 4.964 1.716 15.766 3.403 5.264 1.547200 11.000 2.419 4.289 1.773 14.799 3.161 5.348 1.692 13.799 2.514 4.211 1.675(b) Red-blak relaxation resultsRedBlak1D RedBlak2D RedBlak3Darray orig transla translate fusion orig transla translate fusion orig transla translate fusionsize (se) te only + fusion only (se) te only + fusion only (se) te only + fusion only50 11.500 2.178 5.338 2.451 17.166 1.650 3.344 2.026 22.499 3.260 3.445 1.05775 14.999 1.728 6.692 3.872 16.666 1.627 3.280 2.016 27.332 3.938 3.776 0.959100 26.166 3.540 11.852 3.348 32.165 2.672 5.146 1.926 35.665 4.744 4.176 0.880125 32.499 1.960 12.327 6.289 41.498 2.418 4.421 1.828 45.998 4.685 3.895 0.831150 35.165 2.865 13.885 4.847 46.665 2.134 4.643 2.176 53.498 5.272 4.440 0.842175 38.132 2.344 15.270 6.513 52.065 2.514 5.378 2.140 64.531 6.238 5.701 0.914200 38.598 3.125 15.117 4.838 53.398 2.501 6.117 2.446 67.797 6.703 5.384 0.803Table 1. Performane results (orig: elapsed time of original versions written usingarray abstrations | di�erent numbers of iterations were run for di�erent problemsizes; translate-only: speedups from translating array abstrations into low-level C im-plementations; translate+fusion: speedups from both array translation and loop fusion;fusion-only: speedups from applying loop fusion alone.)be re-aligned before fusion and a later loop-splitting step is neessary to removeonditionals inside the fused loop nests. Suh omplex transformations are muhmore easily applied automatially by ompilers than manually by programmers.6 Related WorkRelated work on the optimization of libraries in telesoping languages [9℄ sharessimilar goals as our researh. The SUIF ompiler [10℄ and OpenC++ [11℄ eahprovided a programmable level of ontrol over the ompilation of appliationsin support of optimizing user-de�ned abstrations. The Broadway ompiler [12℄uses general annotation languages to guide soure ode optimizations. WithinROSE, we provide both an open ompiler infrastruture for programmers tode�ne their own optimizations and a olletion of annotation mehanisms forprogrammers to exploit prede�ned traditional ompiler optimizations. TemplateMeta-Programming[13,14℄ has also been used to optimize user-de�ned abstra-tions, but is e�etive only when optimizations are isolated within a single state-ment. Optimizations aross statements, suh as loop fusion, is beyond the apa-bilities of template meta-programming.A rih set of ompiler optimization tehniques have been developed to im-prove the performane of appliations, inluding a olletion of loop transforma-tions. These transformations by default an only optimize operations on prim-

14itive types, whose semantis are known by the ompilers. To extend these op-timizations to user-de�ned abstrations, Wu, Midki�, Moreira and Gupta [15℄proposed semanti inlining, whih treats spei� user-de�ned types as primitivetypes in Java. Artigas, Gupta, Midki� and Moreira [16℄ devised an alias ver-sioning transformation that reates alias-free regions in Java programs so thatloop optimizations an be applied to Java primitive arrays and the array ab-strations from their library. Wu and Padua [17℄ investigated automatially par-allelization of loops operating on user-de�ned ontainers, but assumed that theirompiler knew about the semantis of all operators. All the above approahesapply ompiler tehniques to optimize library abstrations. However, by enod-ing the knowledge within their ompilers, these speialized ompilers annot beused to optimize abstrations in general other than those in their libraries. Inontrast, we target optimizing general user-de�ned abstrations by allowing pro-grammers to lassify their abstrations and to expliitly ommuniate semantisinformation with the ompiler.7 ConlusionsUser-de�ned abstrations are produtive in the development of appliation odes,but the abstration penalty is often not aeptable for sienti� omputing. Wehave presented an approah that allows to redue this penalty suh that the per-formane of user-de�ned abstrations beomes aeptable for high-performaneomputing, allowing to use these abstrations to ahieve higher produtivity inthe development of sienti� appliations.We have demonstrated that leveraging semantis of user-de�ned abstra-tions an provide signi�ant opportunities for our optimizations and identi�edan annotation approah to speify relevant user-de�ned semantis. Using theseannotations, we built an automated transformation approah greatly simplify-ing the otherwise expliit spei�ation of program transformations using moretraditional approahes (suh as the other mehanisms in ROSE). The evaluationwas performed using an array abstration. We expet that additional researhwork on the lassi�ation of general abstrations will lead to a more useful andpratial optimization approah tailored to the domain spei� optimization op-portunities of user-de�ned abstrations.Referenes1. Daniel Quinlan, Markus Shordan, Brian Miller, and Markus Kowarshik. Parallelobjet-oriented framework optimization. Conurreny and Computation: Pratieand Experiene, 16, Issue 2-3:293{302, February 2004.2. Markus Shordan and Daniel Quinlan. A soure-to-soure arhiteture for user-de�ned optimizations. In JMLC'03: Joint Modular Languages Conferene, volume2789 of Leture Notes in Computer Siene, pages 214{223. Springer Verlag, August2003.3. Edison Design Group. http://www.edg.om.

154. Franois Bodin, Peter Bekman, Dennis Gannon, Jaob Gotwals, SrinivasNarayana, Suresh Srinivas, and Beata Winnika. Sage++: An objet-orientedtoolkit and lass library for building fortran and C++ restruturing tools. InProeedings. OONSKI '94, Oregon, 1994.5. Hanspeter Moessenboek. Coo/R - A generator for prodution quality ompilers.In LNCS477, Springer, 1991.6. Christopher W. Fraser, Robert R. Henry, and Todd A. Proebsting. BURG: fastoptimal instrution seletion and tree parsing. ACM SIGPLAN Noties, 27(4):68{76, April 1992.7. Qing Yi and Dan Quinlan. Applying loop optimizations to objet-oriented abstra-tions through general lassi�ation of array semantis. Tehnial Report UCRL-CONF-202762, Lawrene Livermore National Laboratory, Livermore, CA, 2004.8. R. Parsons and D. Quinlan. A++/P++ array lasses for arhiteture indepen-dent �nite di�erene omputations. In Proeedings of the Seond Annual Objet-Oriented Numeris Conferene, April 1994.9. Ken Kennedy, Bradley Broom, Keith Cooper, Jak Dongarra, Rob Fowler, DennisGannon, Lennart Johnsson, John Mellor-Crummey, and Linda Torzon. Telesop-ing languages: A strategy for automati generation of sienti� problem-solvingsystems from annotated libraries. Journal of Parallel and Distributed Computing,61(12):1803{1826, Deember 2001.10. M. S. Lam S. P. Amarasinghe, J. M. Anderson and C. W. Tseng. The suif ompilerfor salable parallel mahines. In in Proeedings of the Seventh SIAM Confereneon Parallel Proessing for Sienti� Computing, Feb 1995.11. Shigeru Chiba. Maro proessing in objet-oriented languages. In TOOLS Pai�'98, Tehnology of Objet-Oriented Languages and Systems, 1998.12. Samuel Z. Guyer and Calvin Lin. An annotation language for optimizing softwarelibraries. ACM SIGPLAN Noties, 35(1):39{52, January 2000.13. Todd Veldhuizen. Expression templates. In S.B. Lippmann, editor, C++ Gems.Prentie-Hall, 1996.14. Federio Bassetti, Kei Davis, and Dan Quinlan. A omparison of performane-enhaning strategies for parallel numerial objet-oriented frameworks. In Ishikawaet al., editor, International Sienti� Computing in Objet-Oriented Parallel En-vironments, ISCOPE 97, volume 1343 of LNCS. Springer, 1997.15. Peng Wu, Samuel P. Midki�, Jose E. Moreira, and Manish Gupta. ImprovingJava performane through semanti inlining. In Proeedings of the Ninth SIAMConferene on Parallel Proessing for Sienti� Computing, Mar 1999.16. Pedro V. Artigas, Manish Gupta, Samuel Midki�, and Jose Moreira. Automatiloop transformations and parallelization for Java. In Proeedings of the 2000 In-ternational Conferene on Superomputing, May 2000.17. Peng Wu and David Padua. Containers on the parallelization of general-purposeJava programs. In Proeedings of International Conferene on Parallel Arhite-tures and Compilation Tehniques, Ot 1999.

