
Classi�
ation and Utilization of Abstra
tions forOptimizationDan Quinlan1, Markus S
hordan2, Qing Yi1, and Andreas Saebjornsen31Lawren
e Livermore National Laboratory, USAfdquinlan, yi4g�llnl.gov2Vienna University of Te
hnologymarkus�
omplang.tuwien.a
.at3University of Oslo, Norwayandreas.sabjornsen�fys.uio.noAbstra
t. We de�ne a novel approa
h for optimizing the use of librarieswithin appli
ations. We propose that library-de�ned abstra
tions be
las-si�ed to support their automated optimization and by leveraging theseadditional semanti
s we enable the library spe
i�
 optimization of appli-
ation
odes. We believe that su
h an approa
h entails the use of formalmethods.We des
ribe ROSE, a framework for building sour
e-to-sour
e transla-tors, used for the high-level optimization of s
ienti�
 appli
ations. It isa
ommon per
eption that performan
e is inversely proportional to thelevel of abstra
tion. Our work shows that this is not the
ase if theadditional semanti
s of library-de�ned abstra
tions
an be leveraged.ROSE allows the re
ognition of su
h abstra
tions and the optimizationof their use in appli
ations. We show how ROSE
an be used to uti-lize the additional semanti
s within the
ompile-time optimization andpresent promising results.1 Introdu
tionUser-de�ned high-level abstra
tions are produ
tive in the development of appli-
ation
odes. Unfortunately the use of high-level abstra
tions usually introdu
esa penalty in performan
e due to indire
tion, insuÆ
ient global optimizationsof
ompilers, or the la
k of program analysis to infer high-level semanti
s andproperties of user-de�ned abstra
tions within a

eptable time bounds. Su
h la
kof information about semanti
s of user-de�ned abstra
tions in libraries disal-lows to perform optimizations of appli
ation
odes using the library's providedabstra
tions.If an optimization is known for a user-de�ned abstra
tion but the requiredproperties of this abstra
tion for guaranteeing the
orre
tness of the optimization
annot be established, we fa
e a (known) performan
e penalty be
ause the moreeÆ
ient version of the
ode is not generated. Su
h a transformation
an be
arried out manually but this
learly redu
es produ
tivity be
ause it would also

2require to maintain the manually optimized
ode. Our approa
h aims at fullyautomating su
h optimizations.We bridge the gap of unknown high-level semanti
s by providing additionalinformation through annotations. This additional information is used to enableoptimizations spe
i�
 to user-de�ned abstra
tions. We present a
ompile-timeapproa
h for the optimization of s
ienti�
 appli
ations using the semanti
s oflibrary abstra
tions and demonstrate the approa
h toward the de�nition of an-notations for abstra
tions using a spe
i�
 abstra
tion. The abstra
tion
hosenfor optimization in our example is an array abstra
tion
ontained within an array
lass library whi
h is used in our s
ienti�
 appli
ations.Given appropriate annotations and transformations, the me
hanisms we presentto optimize high-level abstra
tions are suÆ
ient to optimize arbitrary abstra
-tions. Thus we have addressed numerous aspe
ts of the more general problemwithin the
urrent work. Many aspe
ts of future work will depend upon eithermanual or automated generation of annotations, to
lassify the semanti
 proper-ties of general abstra
tions. We des
ribes the
on
rete work that has been doneto develop an annotation based approa
h to guide the automated optimizationof high-level abstra
tions, starting with a motivating example.1.1 Motivating ExampleFigure 1 shows an example of a high-level abstra
tion. It is an array abstra
tionwhi
h is used within our
urrent s
ienti�
 appli
ations and therefore forms anattra
tive example problem.The
lass Range allows to de�ne integer ranges with a �xed stride for it-erating, and a
lass doubleArray where Range obje
ts serve as parameters toseveral fun
tions for iterating on an array. In the example main fun
tion, weshow how these
lasses
an be used to
ompute a new value for ea
h point inthe array. The user-de�ned types Range and doubleArray allow to de�ne su
ha
omputation without the use of any loop
onstru
ts in the appli
ation
ode.Using su
h
lasses, the user is freed from the burden of writing loops for ea
hdimension of an array. In the example we use a two-dimensional array with typedouble as element type.The fun
tion \main"
onsists of four lines. In line 2 two arrays A and B, ea
hof size 100x100, are
reated. In line 3 Range obje
ts, de�ning ranges from 1 to98 with stride 1 are
reated. Index 0 and 100 are not used in the example. Inline 4 the
omputation is de�ned. For ea
h point within the spe
i�ed ranges, anew value is
omputed on the right hand side as the sum of the four neighborsin horizontal and verti
al dire
tion. In general, an arbitrary expression
an bespe
i�ed on the right hand side, in parti
ular using the operators available inthe
lass doubleArray. In this simple example we have restri
ted the availablefun
tions to \+" and \sin". The full
lass
onsists of about 80 di�erent operators.For our optimizations it is relevant how the iterations are performed on thearray, whether the array points are read-only or modi�ed, and whether aliasesare used to express sharing of data stru
tures. For optimizations on the lowered
ode it is relevant whi
h iterations
an be
ombined into fused loops. We shall

3show how su
h properties
an be spe
i�ed using our annotation language inse
tion 4.
lass Range {publi
:Range (int base, int bound, int stride);Range operator+ (int i);Range operator- (int i);};
lass doubleArray {publi
:doubleArray (int i, int j);doubleArray & operator= (
onst doubleArray & X);friend doubleArray operator+ (
onst doubleArray & X,
onst doubleArray & Y);doubleArray operator() (
onst Range & I,
onst Range & J);friend doubleArray & sin (
onst doubleArray & X);};int main () { /* 1 */doubleArray A(100,100), B(100,100); /* 2 */Range I(1,98,1), J(1,98,1); /* 3 */A(I,J) = B(I-1,J) + B(I+1,J) + B(I,J-1) + B(I,J+1); /* 4 */} Fig. 1. Example: Snippet of header �le and program to be optimized.In the remaining se
tions we present the ROSE[1, 2℄ ar
hite
ture used forimplementing the presented approa
h, the annotation based me
hanism for theoptimization of array abstra
tions, an example problem and performan
e resultsshowing the signi�
ant potential for su
h optimizations.2 Ar
hite
tureThe ROSE infrastru
ture o�ers several
omponents to build a sour
e-to-sour
eoptimizer. A
omplete C++ front end is available that generates an obje
t-oriented annotated abstra
t syntax tree (AST) as an intermediate representa-tion. Optimizations are performed on the AST. Several
omponents
an be usedto build the mid end: a prede�ned traversal me
hanism, an attribute evaluationme
hanism, transformation operators to restru
ture the AST, and pre-de�nedoptimizations. Support for library annotations is available by analyzing prag-mas,
omments, or separate annotation �les. A C++ ba
k end
an be used tounparse the AST and generate C++
ode. An overview of the ar
hite
ture isshown in Fig. 2). Steps 1-7, whi
h
an be performed by a ROSE sour
e-to-sour
eoptimizer, are des
ribed in the following se
tions.2.1 Front EndWe use the Edison Design Group C++ front end (EDG) [3℄ to parse C++ pro-grams. The EDG front end generates an AST and performs a full type evaluationof the C++ program. This AST is represented as a C data stru
ture. We trans-late this data stru
ture into an obje
t-oriented abstra
t syntax tree, Sage III,

4
AST processing
Traversal and attribute computation

Query operators
mode: AST readonly

Transformation operators
mode: AST read/write

Front End

Back End

Middle End

Source fragment
AST fragment

AST fragment

AST fragment
Source fragment

Application

AST

AST

Optimized application

(1)

(2)
(3)

(3)

(4)

(5)
(5)

(6)

(7)

Annotated library interface(1)

Fig. 2. ROSE Sour
e-To-Sour
e ar
hite
turebased on Sage II and Sage++[4℄. Sage III is used by the mid end as intermedi-ate representation. The annotated library interfa
es are header �les whi
h arein
luded by the appli
ation program. The AST passed to the mid end representsthe program and all the header �les in
luded by the program (see Fig. 2, step 1and 2).2.2 Mid EndThe mid end allows the restru
turing of the AST and performan
e improvingprogram transformations. Results of program analysis are made available as an-notations of AST nodes. The AST pro
essing me
hanism allows
omputationof inherited and synthesized attributes on the AST (see se
tion 2.4 for moredetails). ROSE also in
ludes a s
anner whi
h operates on the token stream of aserialized AST so that parser tools
an be used to spe
ify program transforma-tions in semanti
 a
tions of an attribute grammar. The grammar is the abstra
tgrammar, generating the set of all ASTs. More details on the use of attributegrammar tools, in parti
ular Co
o/R [5℄ and Frankie Erse's C/C++ port,
anbe found in [2℄.An AST restru
turing operation spe
i�es a lo
ation in the AST where
odeshould be inserted, deleted, or repla
ed. Transformation operators
an be built

5by using the AST pro
essing me
hanism in
ombination with AST restru
turingoperations. In Fig. 2 steps 3,4,5 show how the ROSE ar
hite
ture also allowsusing sour
e
ode fragments and AST fragments in the spe
i�
ation of pro-gram transformations. A fragment is a
on
rete pie
e of
ode or AST. A pro-gram transformation is de�ned by a sequen
e of AST restru
turing operationswhereas transformation operators
ompute su
h restru
turing sequen
es. Trans-formations
an be parameterized to de�ne
onditional restru
turing sequen
es.This is dis
ussed in detail in se
tion 3.2.3 Ba
k EndThe ba
k end unparses the AST and generates C++ sour
e
ode (see Fig. 3,steps 6 and 7). It
an be spe
i�ed to unparse either all in
luded (header) �les oronly the sour
e �le(s) spe
i�ed on the
ommand line. This feature is importantwhen transforming user-de�ned data types, for example, when adding generatedmethods. Comments are atta
hed to AST nodes and unparsed by the ba
k end.2.4 AST Pro
essingThe AST pro
essing
omponents allow traversing the AST and
omputing at-tributes for ea
h node of the AST. The
omputed values of attributes
an beatta
hed to AST nodes as annotations and used in subsequent optimizations.Context information
an be passed down the AST as inherited attributes andresults of
omputations on a subtree
an be
omputed as synthesized attributes(passing information upwards in the tree). Examples for values of inherited andsynthesized attributes are the nesting level of loops, the s
opes of asso
iatedpragma statements, et
. These annotations
an be used in transformations tode
ide whether a restru
turing operation
an be applied safely. AST pro
essingis used by query operators and transformation operators to
ompute informa-tion a

ording to the stru
ture of the AST and
an also be based on annotations
omputed by other operators. This allows building
omplex high-level transfor-mation operators from lower-level transformation operators.2.5 AST Query OperatorsBuilding on top of the methods in se
tion 2.4, AST query operators are providedthat perform numerous types of prede�ned queries on the AST. AST queryoperators may be
omposed to de�ne
omplex queries. This me
hanism hidessome of the details of the AST traversal and is simple and extensible.2.6 AST AnnotationsThe annotations of the AST
onsist of type information obtained from the EDGfront end and user-de�ned attributes whi
h allow atta
hing results of attribute
omputations to AST nodes. These results
an be a

essed by subsequent AST

6pro
essing steps and allow the
omposition of di�erent AST operators. Anno-tations
an also spe
ify additional semanti
 information. This additional infor-mation
an be utilized in transformations to de
ide whether a restru
turing op-eration is appli
able. Annotations
an be introdu
ed using several me
hanismssupported within ROSE: pragmas,
omments, a separate annotation �le.3 Transformation OperatorsA transformation operator
onsists of a pre-
ondition to hold (based on theAST annotations whi
h are
omputed in the analysis phase) and a restru
turingsequen
e whi
h
an be applied safely if the pre-
ondition holds. A restru
turingsequen
e
onsists of fragment operations whi
h we shall dis
uss in detail.An optimization requires an analysis of the program to determine whether theAST
an be restru
tured su
h that the semanti
s of the program are preserved.For the analysis, the AST pro
essing me
hanism allows
omputing attributes and�xed point algorithms for
ow sensitive analysis
an be applied on the
ontrol
ow graph. The analysis results are atta
hed to the AST as annotations.The sequen
e of AST restru
turing operations
an be
omputed as attributesby the AST pro
essing me
hanism or by using an attribute grammar tool, asdemonstrated in [2℄. Bottom Up Rewrite Systems (BURS), su
h as burg [6℄,
anbe used to operate on the AST. The AST is implemented su
h that for ea
hnode a unique number is available whi
h
an be used as operator identi�er bysu
h tools. The opportunity to
hoose between traversals, the AST pro
essingme
hanism, attribute grammar tools, or BURS tools allows sele
tion of the most
omprehensive spe
i�
ation of a transformation.The
orre
tness of a transformation is addressed by ensuring that the se-quen
e of the restru
turing operations on the AST preserves the semanti
s of theprogram. A transformation operator
onsists of a pre-
ondition to hold (based onthe AST annotations whi
h are
omputed in the analysis phase) and a sequen
eof restru
turing operations whi
h
an be applied safely if the pre-
ondition holds.A restru
turing sequen
e
onsists of fragment operators, and as operands ASTfragments (subtrees), strings (
on
rete pie
es of
ode), or AST lo
ations (denot-ing nodes in the AST).3.1 Fragment OperatorsA fragment operator allows performing a basi
 restru
turing operation su
h asinsert, delete, or repla
e AST fragments. The target lo
ation in the AST
anbe absolute or relative. The fragment to be inserted
an be spe
i�ed as sour
efragment or AST fragment. Let ASTs denote the set of ASTs, Lrel the set ofrelative lo
ations in an AST, Labs the set of absolute lo
ations, i.e. the nodesin an AST, and S the set of valid sour
e fragments with respe
t to an absolutelo
ation in the AST. A sour
e fragment s is valid with respe
t to an absolutelo
ation, labs, in an AST if it
an be
ompleted to a legal program from thesynta
ti
 and semanti

ontext of the absolute lo
ation labs. From the synta
ti

7
ontext the pre�x, s�, is
omputed su
h that all de
larations, opening s
opes,and fun
tion signatures are in
luded in the pre�x. The post�x, s�,
onsists ofall the synta
ti
 entities of
losing s
opes (for nested s
opes su
h as for-loops,while-loops, fun
tion de�nitions, et
.). Hen
e, a sour
e fragment, s2, is valid iffrontend(s� + s2+ s�) su

eeds, i.e. all synta
ti
 and semanti

he
ks su

eedand a
orresponding AST fragment, ast2,
an be generated.Operator Des
riptioninsert :Lrel � Labs �ASTs! ASTs Insertion of AST fragment at relative lo
ation(step 4 in Fig. 2)delete :Labs �ASTs! ASTs Deletion of AST subtree at absolute lo
ationin AST (step 4 in Fig. 2)fragment-frontend :Labs �ASTs� S ! ASTs Translate sour
e fragment with respe
t to ab-solute lo
ation in AST to
orresponding ASTfragment (steps 3,5 in Fig. 2)fragment-ba
kend :Labs �ASTs! S Unparse AST fragment at absolute lo
ation inAST to sour
e fragment (step 5 in Fig. 2)lo
ate :Lrel � Labs �ASTs! Labs Map relative lo
ation with respe
t to absolutelo
ation in AST to absolute lo
ation in sameASTrepla
e :Lrel � Labs �ASTs�ASTs! ASTs Repla
ement of AST fragment at relative lo-
ation (step 4 in Fig. 2)repla
e :Labs �ASTs� S ! ASTs Repla
ement of AST subtree at absolute lo
a-tion in AST by AST fragment
orrespondingto sour
e fragment (steps 3,4,5 in Fig. 2)Fig. 3. Fragment operators whi
h allow to modify the AST by using a relative lo
a-tion, an AST fragment, or a sour
e fragment. Transformation operators are de�ned assequen
e of fragment operations.In Fig. 3.1 an overview of the most important fragment operators is given.The fragment operators allow rewriting the AST by spe
ifying absolute or rel-ative target lo
ations. A relative lo
ation lrel allows spe
i�
ation of a targetlo
ation in an AST relative to an absolute lo
ation labs. The operator lo
ation
an map a relative lo
ation lrel with respe
t to an absolute lo
ation labs anda given AST
ontaining the absolute lo
ation labs, to another absolute lo
ationin the same AST a

ording to Lrel. Relative lo
ations are used to simplify thespe
i�
ation of the target lo
ation of a fragment operation. For example, if astatement
an be hoisted out of a loop it suÆ
es to spe
ify as the target lo
ationas the statement outside the loop-s
ope right before the loop. We have de�nedseveral
lassi�
ations of su
h relative target lo
ations whi
h were useful in mak-ing transformations more
ompa
t. The insert-operation is an example of usinga relative target lo
ation. The operator fragment-frontend allows translation ofsour
e fragments to AST fragments as explained above. It also requires step 5to
ompute the ne
essary pre�x and post�x to
omplete the sour
e fragment toeventually
all the front end for the
ompleted program. The unparsing of an

8AST fragment, fragment-ba
kend requires invoking the ba
k end. The last op-erator listed in Fig. 3.1, repla
e, allows spe
i�
ation of the new AST fragment,ast, whi
h repla
es an AST subtree at lo
ation Labs in this AST, to be spe
i�edby a sour
e fragment, s. This requires all three steps 3,4,5 (see Fig. 2). Step5 is required to unparse parts of the AST to form the pre�x, s�, and post�x,s�. In Step 3 the
ompleted sour
e fragment is translated to an AST and the
orresponding AST fragment, ast, is extra
ted. Step 4 is the a
tual rewritingof the AST and the repla
ement of the AST subtree with the new AST frag-ment is performed. Based on this basi
 operations on fragments, transformationoperators
an de�ned.4 Prede�ned OptimizationsA large set of
ompiler optimizations, in
luding both reordering transformationssu
h as loop fusion/�ssion and blo
king, and instru
tion level transformationssu
h as redundant expression elimination,
an be applied to improve the perfor-man
e of appli
ations. Most of these optimizations are under
ertain safety andpro�tability
onstraints, whi
h in turn require spe
i�
 knowledge of the involvedoperations. However, be
ause user-de�ned abstra
tions often introdu
e fun
tion
alls with unknown semanti
s into an appli
ation, many of these
ompiler opti-mizations are disabled due to the unknown semanti
s.In this se
tion we present te
hniques that extend the appli
ability of prede-�ned
ompiler optimizations. By de�ning an annotation language, whi
h allowsprogrammers to de
lare that
ertain abstra
tions satisfy the extended require-ments of prede�ned
ompiler optimizations, we provide an open interfa
e for theprogrammers to
ommuni
ate with and to
ontrol the underlying optimizations.A preliminary version of our annotation language is shown in Figure 4(a). In thefollowing, we use the annotation examples in Figure 4(b) to further illustratethe te
hniques.4.1 Enabling TransformationsThe most signi�
ant enabling transformations for library abstra
tions is inlining,whi
h eliminates fun
tion
alls by merging the implementations of the fun
tionswithin their
alling
ontexts. Suppose the
ompiler has a

ess to all the sour
e
ode of a library, theoreti
ally, inlining the library
ode
ould permit all ne
essaryprogram analysis and thus allow the
ompiler to dis
over/unlo
k the semanti
sof all abstra
tions, dismissing the
on
erns for obs
ure fun
tion
alls.However, the
urrent
ompilation te
hniques
annot yet fully bridge the gapsbetween abstra
tion semanti
s and their implementation details. Spe
i�
ally,reading the library
ode exposes the underlying implementations, but does notreadily permit a dis
overy of the semanti
s, su
h as properties of
ommutativityand asso
iativity. As the result, we
omplement inlining transformations withsemanti
s annotations whi
h allows library programmers to de�ne the semanti
sand
ontrol the optimizations of their abstra
tions.

9<annot> ::= <annot1> j <annot1>;<annot><annot1> ::=
lass <
ls annot>j operator <op annot><
ls annot> ::= <
lsname>:<
ls annot1>;<
ls annot1>::=<
ls annot2> j <
ls annot2> <
ls annot1><
ls annot2>::= <arr annot>j inheritable <arr annot>j has-value f <val def> g<arr annot>::= is-arrayf <arr def>gj is-arrayfde�nef<stmts>g<arr def>g<op annot> ::= <opde
l> : <op annot1> ;<op annot1> ::=<op annot2> j <op annot2> <op annot1><op annot2> ::=modify <namelist>j new-array (<aliaslist>)f<arr def>gj modify-array (<name>) f<arr def>gj restri
t-value f<val def list>gj read <namelist>j alias <nameGrouplist>j allow-alias <nameGrouplist>j inline <expression><arr def> ::=<arr attr def> j <arr attr def> <arr def><arr attr def> ::= <arr attr>=<expression>;<arr attr> ::= dim j len (<param>)j elem(<paramlist>)j reshape(<paramlist>)<val def> ::= <name>; j <name>;<val def>j <name> = <expression> ;j <name> = <expression> ; <val def>(a) grammar

lass doubleArray:inheritable is-array f dim = 6;len(i) = this.getLength(i);elem(i$x:0:dim-1) = this(i$x);reshape(i$x:0:dim-1) = this.resize(i$x); g;has-value fdim; len$x:0,dim-1=this.getLength(x); goperator doubleArray::operatpr =(
onst doubleArray& that):modify fthisg; read fthatg; alias none;modify-array (this) fdim = that.dim; len(i) = that.len(i);elem(i$x:1:dim) = that.elem(i$x); g;operator +(
onst doubleArray& a1,double a2):modify none; readfa1,a2g; alias none;new-array () f dim = a1.dim; len(i) = a1.len(i);elem(i$x:1:dim) = a1.elem(i$x)+a2; g;operator doubleArray::operator ()(
onst Range& I):modify none; readfIg; alias f (result, this) g;restri
t-value f this = f dim = 1; g;result = fdim = 1; len(0) = I.len;g; g;new-array (this) f dim = 1; len(0) = I.len;elem(i) = this.elem(i�I.stride + I.base); g;
lass Range: has-value fstride; base; len; g;operator Range::Range(int b,int l,int s):modify none; read f b, l, sg; alias none;restri
t-value f this=fbase = b;len= l;stride= s;g;g;operator doubleArray::operator() (int index) :inline f this.elem(index) g;restri
t-value f this = f dim = 1; g;g;operator + (
onst Range& lhs, int x) :modify none; read flhs,xg; alias none;restri
t-value f result=fstride=lhs.stride;len = lhs.len; base = lhs.base + x; g;g;(b)exampleFig. 4. Annotation languageIn our annotation language, the programmers
an not only dire
t
ompil-ers to inline
ertain fun
tion
alls, they
an also de�ne additional propertiesof their abstra
tions in order to enable spe
i�
 prede�ned optimizations. Asexample, the inline annotation in Figure 4 is essentially a \semanti
s inlin-ing" dire
tive for user-de�ned fun
tions. It is used in Figure 4(b) for fun
tion\doubleArray::operator()(int)", whi
h is de
lared as a subs
ripted a

ess of the
urrent doubleArray obje
t.4.2 Loop TransformationsAs modern
omputers be
ome in
reasingly
omplex,
ompilers often need toextensively reorder the
omputation stru
tures of appli
ations to a
hieve highperforman
e. One important
lass of su
h optimizations is the set of loop trans-formation te
hniques, su
h as loop blo
king, fusion/�ssion, and inter
hange, thathas long been applied to Fortran s
ienti�
 appli
ations. Within ROSE, we haveimplemented several aggressive loop transformations and have extended themfor optimizing loops operating on general obje
t-oriented user abstra
tions.

10 Traditional Fortran loop transformation frameworks re
ognize loops operat-ing on Fortran arrays, that is, arrays with indexed element a

ess and with noaliasing between di�erent elements. After
omputing the dependen
e relationsbetween iterations of statements, they then reorder the loop iterations when safeand pro�table. To extend this framework, we use an array-abstra
tion interfa
eto
ommuni
ate with our loop optimizer the semanti
s of user-de�ned array ab-stra
tions in C++. The array-abstra
tion interfa
e both re
ognizes user-de�nedarray abstra
tions and determines the aliasing relations between array obje
ts.In Figure 4(b), the is-array annotation de
lares that the
lass doubleArrayhas the pre-de�ned Fortran array semanti
s. The array
an have at most 6dimensions, with the length of ea
h dimension i obtained by
alling memberfun
tion getLength(i), and with ea
h element of the array a

essed throughthe \()" operator. Here the expression i$x : 0 : dim � 1 denotes a list of pa-rameters, i1,i2,...,idim�1. Similarly, the operator \doubleArray::operator= (
onstdoubleArray& that)" is de
lared to have modify-array semanti
s; that is, it per-forms element-wise modi�
ation of the
urrent array. The operator \+(
onstdoubleArray& a1, double a2)" is de
lared to have the new-array semanti
s; thatis, it
onstru
ts a new array with the same shape as that of a1, and ea
h elementof the new array is the result of adding a2 to the
orresponding element of a1.Similarly, the operator \doubleArray::operator()(
onst Range& I)"
onstru
ts anew array that is aliased with the
urrent one by sele
ting only those elementsthat are within the iteration range I .Be
ause the safety of loop optimizations is determined by evaluating the side-e�e
ts of statements, our annotation language also in
ludes de
larations regard-ing the side-e�e
ts of fun
tion
alls. Spe
i�
ally, the mod annotation de
lares alist of lo
ations that might be modi�ed by a fun
tion
all, the read annotationde
lares the list of lo
ations being used, and the alias annotation de
lares thegroups of names that might be aliased to ea
h other. These annotations dire
tly
ommuni
ate with our global alias and side-e�e
t analysis algorithms. For detailsin using the annotations for loop optimizations, see [7℄.4.3 Instru
tion Level TransformationsTo generate eÆ
ient
ode, most
ompilers in
lude instru
tion level optimizationsthat eliminate redundant
omputations or repla
e expensive
omputations with
heaper ones. The most
ommonly used optimizations in
lude
onstant propaga-tion,
onstant folding, strength redu
tion, redundant expression elimination, anddead
ode elimination. Most of these optimizations have been applied only tointeger expressions that
ontain no obs
ure fun
tion
alls, and
an be extendedwith annotation interfa
es for optimizing high-level user-de�ned abstra
tions.As example, we have implemented an adapted
onstant-propagation/foldingalgorithm to automati
ally determine the symboli
 value properties of arbitraryuser-de�ned obje
ts. In Figure 4, two annotations, has-value and restri
t-value,are used to des
ribe the properties. Spe
i�
ally, has-value de
lares that
lassdoubleArray has two properties: the array dimension and the length of ea
h di-mension i, and that
lass Range has three properties, base, len and stride, for

11sele
ting subsets of elements from arrays. Similarly, the annotation restri
t-valuede
lares how properties of user-de�ned types
an be implied from fun
tion
alls.For example, if \doubleArray::operator()(int index)" is used to a

ess the ele-ment of an doubleArray obje
t arr, we know that arr must have a single dimen-sion, and it will remain single-dimensional until some other operator modi�esits shape. We have
ombined the symboli
 property analysis with loop opti-mizations to automati
ally determine the shapes of user-de�ned Fortran-arrayabstra
tions. For more detail, See [7℄.5 Experimental ResultsThis se
tion presents some preliminary results from applying loop optimizationsto several kernels written using the A++/P++ Library [8℄, an array
lass li-brary that supports both serial and parallel array abstra
tions with a singleinterfa
e. We sele
ted our kernels from the Multigrid algorithm for solving el-lipti
 partial di�erential equations. The Multigrid algorithm
onsists of threephases: relaxation, restri
tion, and interpolation, from whi
h we sele
ted bothinterpolation and relaxation(spe
i�
ally, red-bla
k relaxation) on one, two, andthree dimensional problems.Our experiments aim to validate two
on
lusions: our approa
h
an signi�-
antly improve the performan
e of numeri
al appli
ations, and our approa
h isgeneral enough for optimizing a large
lass of appli
ations using obje
t-orientedabstra
tions. The kernels we used, though small, use a real-world array abstra
-tion library and are representative of a mu
h broader
lass of numeri
al
ompu-tations expressed using sequen
es of array operations. All six kernels (one, twoand three-dimensional interpolation and relaxation) bene�ted signi�
antly fromour optimizations.We generated three versions for ea
h kernel: the original version (orig) us-ing array abstra
tions, the translate-only version auto-optimized by translatingarray operations into low level C implementations, and the translate+fusion ver-sion auto-optimized both with array translation and loop fusion. As example,Figure 5 shows the original, translate-only and translate+fusion versions for theone-dimensional interpolation
ode, the simplest of all kernels. The original ver-sions of all kernels ea
h have 20-60 lines of
ode, (they look simple be
ausethey are written using array abstra
tions). After translating array operationsinto expli
it loops, ea
h kernel
ontains 2-8 loop nests whi
h are then
onsid-ered for loop optimization. Ea
h loop nest has 1-3 dimensions, depending on thedimensionality of the arrays being modi�ed.We measured all versions on a Compaq AlphaServer DS20E. Ea
h node has4GB memory and two 667MHz pro
essors. Ea
h pro
essor has L1 instru
tionand data
a
hes of 64KB ea
h, and 8MB L2
a
he. We used the Compaq vendorC++
ompiler with the highest level of optimization, and measured the elapsed-time of ea
h exe
ution. Table 1 present our measurements using multiple arraysizes.

12void interpolate1D (
oatArray& �neGrid,
oatArray&
oarseGrid) fint �neGridSize = �neGrid.getLength(0),
oarseGridSize =
oarseGrid.getLength(0);Range If (2,�neGridSize-2,2), I
 (1,
oarseGridSize-1,1);�neGrid(If) =
oarseGrid(I
);�neGrid(If-1) = (
oarseGrid(I
-1) +
oarseGrid(I
)) / 2.0;g (a) original versionvoid interpolate1D (
oatArray& �neGrid,
oatArray&
oarseGrid) fint �neGridSize = �neGrid.getLength(0),
oarseGridSize =
oarseGrid.getLength(0);Range If (2,�neGridSize-2,2), I
 (1,
oarseGridSize-1,1);
oat* �neGridPointer = �ndGrid.getPointer(), *
oarseGridPointer =
oarseGrid.getPointer();for (int i = 0; i < (�neGridSize - 3) / 2; i += 1)�neGridPointer[i * 2 + 2℄ =
oarseGridPointer[i + 1℄;for (int j = 0; j < (�neGridSize - 3) / 2; j += 1)�neGridPointer[j * 2 + 1℄ =
oarseGrid[j℄ +
oarseGridPointer[j + 1℄ / 2.0;g (b) translating array operations onlyvoid interpolate1D (
oatArray& �neGrid,
oatArray&
oarseGrid) fint �neGridSize = �neGrid.getLength(0),
oarseGridSize =
oarseGrid.getLength(0);Range If (2,�neGridSize-2,2), I
 (1,
oarseGridSize-1,1);
oat* �neGridPointer = �ndGrid.getPointer(), *
oarseGridPointer =
oarseGrid.getPointer();for (int i = 0; i < (�neGridSize - 3) / 2; i += 1)�neGridPointer[i * 2 + 2℄ =
oarseGridPoiner[i + 1℄;�neGridPointer[j * 2 + 1℄ =
oarseGridPointer[j℄ +
oarseGridPointer[j + 1℄ / 2.0;g (
) translating array operations + loop fusionFig. 5. Example: 1D interpolationFrom Table 1(a), in nearly all
ases the translation of the array abstra
tionsresults in signi�
ant improvements. But applying loop fusion improves the per-forman
e further by 20%-75%. This validates our belief that loop optimizationis a signi�
ant step further toward fully re
overing the performan
e penalty ofusing high-level array abstra
tions.From Table 1(b), the dominate performan
e improvements
ome from trans-lating array abstra
tions into low-level implementations(translate-only). Loop fu-sion
an further improve performan
e by 2.3-6.5 times for one and two-dimensionalrelaxation kernels, but for three-dimensional relaxation, it showed only slight im-provement (5%) for small arrays(50) and degraded performan
e (up to 20%) forlarge arrays. Here the performan
e degradation is due to in
reased register pres-sures from the mu
h larger fused loop bodies in the three-dimensional
ase. Weare working on better algorithms to sele
tively apply loop fusion.The �nal
odes generated by our optimizer are very similar to the
orre-sponding C programs that programmers would manually write. Consequently,we believe that their performan
e would also be similar. Further, be
ause pro-grammers usually don't go out-of-the-way in applying loop optimizations, ourte
hniques
an sometimes perform better than hand-written
ode. This is espe-
ially true for the red-bla
k relaxation kernels, where the original loops need to

13(a) Interpolation resultsInterp1D Interp2D Interp3Darray orig transla translate fusion orig transla translate fusion orig transla translate fusionsize (se
) te only + fusion only (se
) te only + fusion only (se
) te only + fusion only50 4.833 1.915 2.131 1.113 7.000 3.034 3.932 1.296 9.166 2.497 3.184 1.27575 5.000 4.142 4.519 1.091 7.000 2.766 3.131 1.132 9.333 3.021 3.813 1.262100 5.333 2.593 2.899 1.118 7.000 2.753 3.247 1.179 9.333 2.929 3.767 1.286125 7.666 2.853 4.228 1.482 9.833 3.304 3.882 1.175 10.666 3.214 4.442 1.382150 9.166 2.390 4.214 1.763 11.166 2.897 4.542 1.568 12.333 2.871 4.189 1.459175 11.366 2.630 4.618 1.756 12.833 2.893 4.964 1.716 15.766 3.403 5.264 1.547200 11.000 2.419 4.289 1.773 14.799 3.161 5.348 1.692 13.799 2.514 4.211 1.675(b) Red-bla
k relaxation resultsRedBla
k1D RedBla
k2D RedBla
k3Darray orig transla translate fusion orig transla translate fusion orig transla translate fusionsize (se
) te only + fusion only (se
) te only + fusion only (se
) te only + fusion only50 11.500 2.178 5.338 2.451 17.166 1.650 3.344 2.026 22.499 3.260 3.445 1.05775 14.999 1.728 6.692 3.872 16.666 1.627 3.280 2.016 27.332 3.938 3.776 0.959100 26.166 3.540 11.852 3.348 32.165 2.672 5.146 1.926 35.665 4.744 4.176 0.880125 32.499 1.960 12.327 6.289 41.498 2.418 4.421 1.828 45.998 4.685 3.895 0.831150 35.165 2.865 13.885 4.847 46.665 2.134 4.643 2.176 53.498 5.272 4.440 0.842175 38.132 2.344 15.270 6.513 52.065 2.514 5.378 2.140 64.531 6.238 5.701 0.914200 38.598 3.125 15.117 4.838 53.398 2.501 6.117 2.446 67.797 6.703 5.384 0.803Table 1. Performan
e results (orig: elapsed time of original versions written usingarray abstra
tions | di�erent numbers of iterations were run for di�erent problemsizes; translate-only: speedups from translating array abstra
tions into low-level C im-plementations; translate+fusion: speedups from both array translation and loop fusion;fusion-only: speedups from applying loop fusion alone.)be re-aligned before fusion and a later loop-splitting step is ne
essary to remove
onditionals inside the fused loop nests. Su
h
omplex transformations are mu
hmore easily applied automati
ally by
ompilers than manually by programmers.6 Related WorkRelated work on the optimization of libraries in teles
oping languages [9℄ sharessimilar goals as our resear
h. The SUIF
ompiler [10℄ and OpenC++ [11℄ ea
hprovided a programmable level of
ontrol over the
ompilation of appli
ationsin support of optimizing user-de�ned abstra
tions. The Broadway
ompiler [12℄uses general annotation languages to guide sour
e
ode optimizations. WithinROSE, we provide both an open
ompiler infrastru
ture for programmers tode�ne their own optimizations and a
olle
tion of annotation me
hanisms forprogrammers to exploit prede�ned traditional
ompiler optimizations. TemplateMeta-Programming[13,14℄ has also been used to optimize user-de�ned abstra
-tions, but is e�e
tive only when optimizations are isolated within a single state-ment. Optimizations a
ross statements, su
h as loop fusion, is beyond the
apa-bilities of template meta-programming.A ri
h set of
ompiler optimization te
hniques have been developed to im-prove the performan
e of appli
ations, in
luding a
olle
tion of loop transforma-tions. These transformations by default
an only optimize operations on prim-

14itive types, whose semanti
s are known by the
ompilers. To extend these op-timizations to user-de�ned abstra
tions, Wu, Midki�, Moreira and Gupta [15℄proposed semanti
 inlining, whi
h treats spe
i�
 user-de�ned types as primitivetypes in Java. Artigas, Gupta, Midki� and Moreira [16℄ devised an alias ver-sioning transformation that
reates alias-free regions in Java programs so thatloop optimizations
an be applied to Java primitive arrays and the array ab-stra
tions from their library. Wu and Padua [17℄ investigated automati
ally par-allelization of loops operating on user-de�ned
ontainers, but assumed that their
ompiler knew about the semanti
s of all operators. All the above approa
hesapply
ompiler te
hniques to optimize library abstra
tions. However, by en
od-ing the knowledge within their
ompilers, these spe
ialized
ompilers
annot beused to optimize abstra
tions in general other than those in their libraries. In
ontrast, we target optimizing general user-de�ned abstra
tions by allowing pro-grammers to
lassify their abstra
tions and to expli
itly
ommuni
ate semanti
sinformation with the
ompiler.7 Con
lusionsUser-de�ned abstra
tions are produ
tive in the development of appli
ation
odes,but the abstra
tion penalty is often not a

eptable for s
ienti�

omputing. Wehave presented an approa
h that allows to redu
e this penalty su
h that the per-forman
e of user-de�ned abstra
tions be
omes a

eptable for high-performan
e
omputing, allowing to use these abstra
tions to a
hieve higher produ
tivity inthe development of s
ienti�
 appli
ations.We have demonstrated that leveraging semanti
s of user-de�ned abstra
-tions
an provide signi�
ant opportunities for our optimizations and identi�edan annotation approa
h to spe
ify relevant user-de�ned semanti
s. Using theseannotations, we built an automated transformation approa
h greatly simplify-ing the otherwise expli
it spe
i�
ation of program transformations using moretraditional approa
hes (su
h as the other me
hanisms in ROSE). The evaluationwas performed using an array abstra
tion. We expe
t that additional resear
hwork on the
lassi�
ation of general abstra
tions will lead to a more useful andpra
ti
al optimization approa
h tailored to the domain spe
i�
 optimization op-portunities of user-de�ned abstra
tions.Referen
es1. Daniel Quinlan, Markus S
hordan, Brian Miller, and Markus Kowars
hik. Parallelobje
t-oriented framework optimization. Con
urren
y and Computation: Pra
ti
eand Experien
e, 16, Issue 2-3:293{302, February 2004.2. Markus S
hordan and Daniel Quinlan. A sour
e-to-sour
e ar
hite
ture for user-de�ned optimizations. In JMLC'03: Joint Modular Languages Conferen
e, volume2789 of Le
ture Notes in Computer S
ien
e, pages 214{223. Springer Verlag, August2003.3. Edison Design Group. http://www.edg.
om.

154. Fran
ois Bodin, Peter Be
kman, Dennis Gannon, Ja
ob Gotwals, SrinivasNarayana, Suresh Srinivas, and Beata Winni
ka. Sage++: An obje
t-orientedtoolkit and
lass library for building fortran and C++ restru
turing tools. InPro
eedings. OONSKI '94, Oregon, 1994.5. Hanspeter Moessenboe
k. Co
o/R - A generator for produ
tion quality
ompilers.In LNCS477, Springer, 1991.6. Christopher W. Fraser, Robert R. Henry, and Todd A. Proebsting. BURG: fastoptimal instru
tion sele
tion and tree parsing. ACM SIGPLAN Noti
es, 27(4):68{76, April 1992.7. Qing Yi and Dan Quinlan. Applying loop optimizations to obje
t-oriented abstra
-tions through general
lassi�
ation of array semanti
s. Te
hni
al Report UCRL-CONF-202762, Lawren
e Livermore National Laboratory, Livermore, CA, 2004.8. R. Parsons and D. Quinlan. A++/P++ array
lasses for ar
hite
ture indepen-dent �nite di�eren
e
omputations. In Pro
eedings of the Se
ond Annual Obje
t-Oriented Numeri
s Conferen
e, April 1994.9. Ken Kennedy, Bradley Broom, Keith Cooper, Ja
k Dongarra, Rob Fowler, DennisGannon, Lennart Johnsson, John Mellor-Crummey, and Linda Tor
zon. Teles
op-ing languages: A strategy for automati
 generation of s
ienti�
 problem-solvingsystems from annotated libraries. Journal of Parallel and Distributed Computing,61(12):1803{1826, De
ember 2001.10. M. S. Lam S. P. Amarasinghe, J. M. Anderson and C. W. Tseng. The suif
ompilerfor s
alable parallel ma
hines. In in Pro
eedings of the Seventh SIAM Conferen
eon Parallel Pro
essing for S
ienti�
 Computing, Feb 1995.11. Shigeru Chiba. Ma
ro pro
essing in obje
t-oriented languages. In TOOLS Pa
i�
'98, Te
hnology of Obje
t-Oriented Languages and Systems, 1998.12. Samuel Z. Guyer and Calvin Lin. An annotation language for optimizing softwarelibraries. ACM SIGPLAN Noti
es, 35(1):39{52, January 2000.13. Todd Veldhuizen. Expression templates. In S.B. Lippmann, editor, C++ Gems.Prenti
e-Hall, 1996.14. Federi
o Bassetti, Kei Davis, and Dan Quinlan. A
omparison of performan
e-enhan
ing strategies for parallel numeri
al obje
t-oriented frameworks. In Ishikawaet al., editor, International S
ienti�
 Computing in Obje
t-Oriented Parallel En-vironments, ISCOPE 97, volume 1343 of LNCS. Springer, 1997.15. Peng Wu, Samuel P. Midki�, Jose E. Moreira, and Manish Gupta. ImprovingJava performan
e through semanti
 inlining. In Pro
eedings of the Ninth SIAMConferen
e on Parallel Pro
essing for S
ienti�
 Computing, Mar 1999.16. Pedro V. Artigas, Manish Gupta, Samuel Midki�, and Jose Moreira. Automati
loop transformations and parallelization for Java. In Pro
eedings of the 2000 In-ternational Conferen
e on Super
omputing, May 2000.17. Peng Wu and David Padua. Containers on the parallelization of general-purposeJava programs. In Pro
eedings of International Conferen
e on Parallel Ar
hite
-tures and Compilation Te
hniques, O
t 1999.

