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ABSTRACT

We present initial work on perturbation techniques that
cause the manifestation of timing-related bugs in distributed
memory Message Passing Interface (MPI)-based applications.
These techniques improve the coverage of possible message
orderings in MPI applications that rely on nondeterministic
point-to-point communication and work with small proces-
sor counts to alleviate the need to test at larger scales. Us-
ing carefully designed model problems, we show that these
techniques aid testing for problems that are often not easily
reproduced when running on small fractions of the machine.

Our perturbation layer, JitterBug, builds on P
N

MPI,
an extension of the MPI profiling interface that supports
multiple layers of profiling libraries. We discuss how Jit-

terBug complements existing MPI checking tools through
the P

N
MPI framework. We present opportunities to build

additional tools that statically analyze and directly trans-
form the source code to support testing and debugging MPI
applications at reduced scale.

Categories and Subject Descriptors

D.1.3 [Software]: Concurrent Programming—parallel pro-
gramming, distributed programming ; D.2.5 [Software En-
gineering]: Testing and Debugging—distributed debugging,
testing tools, tracing

General Terms

Algorithms, Measurement, Reliability, Experimentation
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1. INTRODUCTION
Large-scale scientific applications using the Message Pass-

ing Interface (MPI) [11] are often difficult to test. Systems
at U.S. Department of Energy laboratories use tens of thou-
sands of processors, and systems will soon have hundreds
of thousands to millions of processors. The development
environment for these systems is typically a small fraction
of the whole machine and tools are often difficult to use
at larger sizes. However, applications may exhibit errors,
such as deadlocks and races, that are sensitive to timing
and message orderings that only occur in the real execution
environment. We seek methods that can cause these bugs
in the development environment.

In this paper, we evaluate techniques that improve testing
coverage for bugs in MPI applications that rely on nonde-
terminism, one of the most important classes of bugs to
developers [3]. Nondeterministic operations include MPI
“receive-any” calls, in which the receiving process accepts
a message from any sender instead of a specifically identi-
fied source. A developer often uses these calls for perfor-
mance reasons (e.g., to tolerate high variances in message
latencies), but may have a bug that depends on the order of
received messages. Users typically must use repeated testing
to uncover these bugs. However, they can only hope that
buggy orderings are covered by even a huge test count.

The difficulty of finding nondeterministic MPI bugs is ex-
acerbated by machine-dependent idiosyncracies [9]. Con-
sider a simple MPI application run with p processes in which
p−1 processes each send 1 message to a master process, and
the master process executes p− 1 receive-any operations for
those messages. For a p = 8 process run, Figure 1 (left)
shows which of the (p− 1)! = 5040 possible message order-
ings, linearized in increasing lexicographic order by process
rank along the y-axis, occurs in 5040 consecutive trials (x-
axis) of this program. After all trials, we observe only about
20% of the possible orderings; if all permutations had been
equally likely, we would expect to see 63% instead (see Sec-
tion 2). These orderings are biased toward those in which
the first message arrives from either process 1 or process
2, as indicated by the relatively dense bottom two bands.
Although repeated test executions may cover only a frac-
tion of the possible cases, we could improve the coverage by
inserting random delays at send operations, or even explic-
itly buffering and reordering all receive operations. Our MPI
send and receive perturbation modules do just that, improv-
ing the ordering coverage as shown in Figure 1 (right).
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Figure 1: (Left) Machine-dependent bias in occurrence of message orderings. (Right) Improved the coverage
of possible orderings by random delays of sends to produce a uniform distribution of orderings, or explicit
buffering and deterministic reordering of receives (diagonal line).

The techniques we present are based on the idea of control-
ling or otherwise influencing the message order to improve
the coverage of possible message orderings during testing
(Section 3). These perturbative techniques apply and ex-
tend ideas proposed in the IBM ConTest tool for multi-
threaded applications [4] to the distributed memory MPI
case. We consider perturbing both send and receive op-
erations. We use carefully designed model problems that
abstract the patterns appearing in large-scale scientific ap-
plications to show how to cover significantly more message
orderings in order to find bugs during testing.

We are implementing these ideas in JitterBug, an MPI
layer built using P

N
MPI [14]. P

N
MPI extends the MPI

profiling interface (known as PMPI) to support multiple lay-
ers of profiling libraries, which run transparently to the user.
Since perturbation-induced errors typically appear as mis-
matched send/receive operations and other types of dead-
locks, JitterBug should be used with other MPI checking
tools, such as Umpire [15], MARMOT [8], or the Intel Mes-
sage Checker [3]. We are pursuing the combined uses of
these tools for evaluation on full-scale applications.

2. NONDETERMINISM IN MPI: MODEL

PROBLEMS
We describe several model problems that illustrate the

kinds of bugs our perturbation techniques address. Though
all are artificial, three are coarse abstractions of realistic ap-
plication behavior which we can tune to control the difficulty
of finding a bug. We empirically evaluate the effectiveness
of message perturbation for these problems in Section 4.

The model problems all use the MPI feature that allows
a process to receive messages from any node, without hav-
ing to know the sending node a priori. MPI one-sided op-
erations, such as MPI Put and MPI Get, provide shared-
memory style operations for reading and writing directly
from locations in another process’s address space [12]. Since
1-sided communication has a ready mapping to the shared-
memory multithreaded case, we do not consider it here.

P1

P0

P2

P1

P0

P2

Figure 2: Example of nondeterministic receives and pos-

sible consequences.

1: Let r = rank of this process
2: Let p = the number of processes
3: if r == 0 then /* Master receive on process 0 */
4: for all n ∈ {1, 2, . . . , p− 1} do /* Neighbors n */
5: MPI Recv(∗); /* Receive-any */
6: else /* Send message to process 0 */
7: MPI Send(message→ 0);

Figure 3: Nondeterministic receives: Process 0
receives 1 message from every other process in
any order.

2.1 Nondeterministic receives
Applications that use the receive-any feature can exhibit

nondeterministic behavior. Since parallel processes are not
synchronized, multiple concurrent messages matching a sin-
gle receive can be seen by the application in any order. Fig-
ure 2 shows an example: the receive operation in process 0
matches both messages sent by process 1 and process 2. The
order in which process 0 receives these messages and, as a
result, the value that it computes depends on the timing.

We consider the p-process model problem shown in Fig-
ure 3, in which a single process performs p − 1 receive-any
operations to collect one message from each of the other p−1
processes. The two possible executions of Figure 3 for p = 3
appear in Figure 2. Kranzlmüller and Schulz show that the



1: Let r = rank of this process
2: Let p = number of processes
3: Let M = largest value the type can hold
4: Let u = any constant ≥ 1
5: if r == 0 then /* Master process */
6: Let s = M −

`

p

2
− 1

´

∗ u

7: for all n ∈ {1, 2, . . . , p− 1} do /* Neighbors n */
8: t← MPI Recv(∗); /* Receive-any */
9: if (M − s) < t then /* s + t overflows */

10: print (”Failure”);
11: s← s + t;
12: else
13: if r is odd then
14: Let n = u;
15: else
16: Let n = −u;
17: MPI Send(n→ 0); /* Send n to master */

Figure 4: The overflow model problem has the
same communication pattern as the nondeter-
ministic receive benchmark (Figure 3), but fails
under some message orderings.

nondeterministic behavior of this problem varies drastically
across architectures and none of the test architectures ex-
hibits behavior even close to complete coverage of all possi-
ble message permutations [9]. Hence, any attempt to debug
such codes will only reach a subset of possible executions,
leaving the possibility for undetected race conditions.

In this model problem, the receiving process sees up to
d = (p− 1)! possible message orderings. If all orderings are
equally likely, then in k consecutive executions, the receiver
should expect to see C unique orderings, where

C = d− d ·

„

1−
1

d

«k

(1)

When k = d and d≫ 1, C ≈ d ·
`

1− 1

e

´

, or roughly 63% of
d. We revisit Equation 1 during the analysis of experimental
results in Section 4.

The nondeterministic receive benchmark of Figure 3 does
not have any bugs in it, so we introduce the overflow model
problem, which has the identical communication pattern but
also has a subtle bug, in Figure 4. A master process com-
putes the sum s of contributions from all other processes,
where processes with odd rank send the value u, while even-
ranked processes send −u. The final sum should not over-
flow, but the partially accumulated sum could overflow the
finite precision of s under some message orderings. We can
control how commonly this bug might appear by an appro-
priate choice of u. The overflow problem models, for in-
stance, a single iteration of a Monte Carlo-based numerical
algorithm.

2.2 Raceaddition problem
Many multithreaded synchronization bugs have direct mes-

sage passing analogues. We present one for a simple non-
atomic operation race condition example from a paper about
using perturbation techniques with the ConTest tool to find
multithreaded application bugs (Figure 3 in Edelstein, et
al. [4]). Figure 5 shows MPI pseudocode for our analogue.

The program in Figure 5, when run with p = 6 processes,
will print the value, “11111” if all messages are received

1: Let r = rank of this process
2: Let p = number of processes
3: if r == 0 then /* Master process */
4: sleep ( 1

10
second);

5: Let s = 0
6: while receive buffer is not empty do /* Sum values

from all others */
7: s← s + MPI Recv(∗); /* Receive-any */
8: print (s);
9: else

10: Let n = 10r−1;
11: MPI Send(n→ 0); /* Send n to master */

Figure 5: Pseudocode of the race-addition model
problem, adapted from a ConTest multithreaded
example to MPI.

within 1

10
of a second (“sleep” statement); otherwise, an-

other value will be printed and a bug will occur due to one
or more unmatched sends. In the absence of heavy cluster
utilization or network traffic, the time to send a message is
typically very short compared to the sleep time in this ex-
ample, and so this bug will occur seldomly. The goal of our
perturbation techniques, as with ConTest, is to help elicit
the buggy behavior in which all possible 2p−1 values are
printed.

2.3 Dining philosophers
The multi-process synchronization errors that occur in

multithreaded shared memory applications also occur in dis-
tributed memory codes. A classic abstraction of such errors
is the well-known dining philosopher problem. In this prob-
lem, p philosophers sit around a circular table, separated
from one another by one of p utensils. Each philosopher
alternates between “thinking” and “eating” states. Before
eating, each philosopher must acquire both utensils (one to
his left and the other to his right). However, he can only ac-
quire one utensil at a time and does not relinquish his uten-
sils until he has finished eating. The problem is to devise
a protocol for acquiring utensils that avoids starvation and
deadlock. In distributed memory codes, this kind of problem
arises in applications that use distributed data structures,
shared files, or that use MPI one-sided communication.

The symmetric philosopher protocol, in which each philoso-
pher first attempts to acquire the utensil to left, and when
successful, then proceeds to acquire the utensil to his right,
will eventually deadlock. However, such a bug may be un-
likely to occur if, say, the thinking time and/or eating times
are large compared to the time to acquire both utensils. To
simulate such conditions in our experiments, we consider an
implementation of the symmetric protocol in which we pre-
scribe the distributions of time in the thinking and eating
states. In this way, we can control the probability that the
deadlock error occurs in the symmetric protocol by adjust-
ing these times to be large relative to the acquisition time
in our particular network.

Given an even number p ≥ 4 of processes, we consider
an implementation of the dining philosophers problem in
which the even numbered processes are philosophers, and
the odd numbered processes are utensils. A philosopher ac-
quires utensils by sending a message to each of his utensil
neighbors, and the utensils respond with a flag letting the



1: Let r = rank of this process
2: Let p = the number of processes
3: Let N = a neighborhood N ⊆ {1, . . . , p}\r
4: repeat /* Until convergence */
5: s← local computation();
6: for all n ∈ N do /* Broadcast to neighbors */
7: MPI Isend(s→ n);
8: for all n ∈ N do /* Receive from neighbors */
9: x← MPI Recv(∗); /* Receive any */

10: s← s⊕ x; /* Combine */
11: MPI Waitall();
12: until cond(s)

Figure 6: Convergence loop example: A send-
recieve mismatch error may occur if ⊕ is non-
associative.

philosopher know whether acquisition was successful or not.
A philosopher continues to request utensils until both are
acquired.

2.4 Convergence loop
We next consider a situation in which all processes first

redundantly evaluate some condition computed from global
state and then take the same action based on the result.
A bug may occur if the condition depends on the order of
arriving messages that contain the global state. Figure 6
shows a common pattern in scientific applications. Each
process r among a total of p processes concurrently exe-
cutes a loop that repeatedly computes some value s locally,
then performs a reduction operation among some set N of
neighboring processes in lines 6–11 (e.g., a residual calcu-
lation involving a dot product on distributed vectors), and
finally evaluates some condition cond(s) on the result. All
processes should take the same action in line 12 (e.g., all
repeat if the residual is large, or exit the loop if it is small),
as an unmatched send-receive error would occur otherwise.

In Figure 6, we implement a reduction operation consist-
ing of non-blocking sends (lines 6–7) and receive-any calls
(lines 8–9). This implementation is efficient if there is some
load imbalance or otherwise high variance in the latency of
communication among the neighbors since messages may be
received in any order (line 9). However, if the ⊕ operator is
non-associative—for example, ⊕ is floating-point addition—
an error may occur. We can control the likelihood of an error
occurring by choosing cond(s) appropriately.

Our implementation of this abstract problem computes a
global all-to-all sum, using single-precision IEEE floating-
point addition as the non-associative operator, ⊕.1 At line
5, each process performs a simple assignment of a fixed,
carefully chosen constant. In principle, all processes should
compute the same sum at each iteration. However, each sum
will differ in practice due to round-off errors, since each pro-
cess could combine the local sums from the other processes
in (p−1)! ways depending on the order of arriving messages
at the receive-any calls. Since there will be some distribu-
tion of possible values of s, we can implement cond(s) as a
simple test of whether s is less than some value chosen with
respect to this distribution, thereby allowing us to control
the relative frequency of the processes disagreeing.

1Special compiler flags ensure that we do not use the ex-
tended precision registers to compute the intermediate sums.
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3. A PERTURBATION LAYER FOR MPI
Edelstein, et al., propose automated introduction of ran-

dom delays, or irritators, at synchronization and shared-
memory access points in multithreaded programs [4]. These
delays increase the number of thread interleavings at these
critical points of program execution, thereby improving the
quality of testing. As Figure 1 and the model problems of
Section 2 suggest, the same idea applies to MPI applications
at points of nondeterminism.

3.1 MPI perturbation techniques
When implementing similar techniques for MPI we distin-

guish two main approaches: a) sender-side and b) receiver-
side perturbation. The former delays each send by a random
amount of time, while the latter buffers incoming message
at nondeterministic receives and reorders their delivery to
the application.

Both have advantages and disadvantages. Sender-based
perturbation is simple to implement and models typical per-
turbations encountered on real machines. However, it does
not guarantee that messages will actually be reordered. Re-
ceiver-based perturbation, on the other hand, may actively
reorder messages and includes the ability to compute cov-
erage. However, receiver-based techniques are complex to
implement since they must store and retrieve complete mes-
sages with arbitrary datatypes.

In this initial study, we therefore concentrate on sender-
based perturbation as well as a simplified receiver-based per-
turbation based on basic datatypes.

3.2 Implementation
The MPI Standard defines a mechanism, the PMPI inter-

face, to intercept any MPI call using a transparent interpo-
sition layer [11]. Tool developers implement new versions of
all targeted MPI routines and then use a function-shifted
interface to invoke the new layer. Figure 7 illustrates a
common method to implement this interface: weak sym-
bols. When linked with the application, a tool then inter-
poses itself between the application and the MPI library and
thereby ensures the execution of the tool on every redefined
MPI call. We use this interface to implement both sender-
and receiver-side perturbation by intercepting all send or
receive calls respectively.



On the sender-side, our simple perturbation module de-
lays the send by an amount of time chosen uniformly at ran-
dom from some user-specified interval, [0, tmax]. In general,
the user should choose tmax to match the characteristics of
her application and machine. If tmax is too short, the per-
turbation will not result in the desired effect of creating more
execution orders. If instead it is too long, the application is
needlessly stalled.

We have also implemented an experimental option to en-
able the module to select tmax automatically by tracking
a small window of the times between recent send calls, and
setting the delay-time in proportion to the average of these
times. We evaluate this module on the dining philosophers
example in Section 4.3.

On the receiver-side, we implement a simple, purely deter-
ministic protocol in the perturbation module. Our module
assumes at most 1 message from all other processes at each
receive-any call-site, buffers a fixed number of messages at
each call-site and returns these messages in permuted or-
der. For each batch of receive-any calls, the permutation
is advanced purely deterministically in lexicographically in-
creasing order. This behavior ensures full coverage of mes-
sage orderings after (p − 1)! trials for any message pattern
matching the nondeterministic receive model problem (Sec-
tion 2.1). We are extending the receiver-side module to be
more flexible with respect to other message patterns.

A perturbation layer alone, however, is insufficient to help
programmers write more portable and correct MPI code.
We must combine it with other tools that check the execu-
tion for certain properties. Unfortunately, PMPI allows only
a single tool to add interposing code into the MPI layer: the
link and naming structure of PMPI does not support mul-
tiple tools concurrently.

We overcome this obstacle through P
N

MPI, a tool infras-
tructure developed at LLNL to load and combine multiple
PMPI modules dynamically [14]. We outline the architec-
ture of P

N
MPI in Figure 8. It intercepts all MPI function

calls, loads any user requested PMPI tool modules dynam-
ically into the application, and then creates a call chain for
each MPI call through all loaded PMPI modules. Thus, we
can invoke several independent PMPI tools during a single
run of the MPI application.

4. EXPERIMENTAL RESULTS
We implemented the model problems of Section 2 and the

perturbation modules of Section 3. In this section, we eval-
uate the perturbation techniques experimentally, organizing
the presentation by problem. Collectively, the results sup-
port the utility of message perturbation.

We performed these experiments on a tightly-coupled Lin-
ux cluster consisting of 1152 two-way 2.4 GHz Pentium 4
nodes, Quadrics Elan3 interconnect, and Quadrics MPI. The
MPI point-to-point latency is approximately 5 µs, and the
peak point-to-point bandwidth is approximately 340 MB/s.
In these proof-of-concept experiments, we use at most 8
nodes and always use only 1 CPU per node. We consider
three run modes in these experiments: without any per-
turbation (“normal”); with simple sender-side perturbation
(“p-send”); and with receiver-side perturbation (“p-recv”).

4.1 Nondeterministic receives
We explore the coverage of all possible message orderings

of the nondeterministic receive problem (Section 2.1) under

all three run modes. We experimented with several maxi-
mum sender perturbation delays for the p-send mode. We
present results for a small maximum delay time (roughly 500
µs) since it yielded a good approximation to the theoretical
case of a uniform distribution of message orderings, where
all orderings are equally likely.

We show the empirical cumulative distribution function
of possible message orderings in Figure 9 (left). A uniform
distribution is shown for reference as the diagonal line. The
normal mode exhibits a strong bias toward message order-
ings in which the first arriving message comes from either
process 1 or process 2 (2 left-most vertical bands, which cor-
respond to the lower horizontal bands in Figure 1). These
orderings account for 70% of all normal observations. By
contrast, p-send approximates a uniform distribution.

We plot the number of unique orderings observed as a
function of the number of trial executions in Figure 9 (right).
In this figure, each experiment consisted of (p− 1)! = 5040
trial runs of the model problem. We repeat the experiment
100 times for each run mode. We plot the mean (mark-
ers) and the maximum and minimum (solid lines around
means) percentage of possible unique orderings observed af-
ter a given fraction of the trial runs. After (p − 1)! trials,
we observe only 20% of the total possible orderings in the
normal case, compared to 63% for sender-side perturbation.
Indeed, the curve for sender-side perturbation nearly exactly
matches what we would expect from Equation 1, plotted as
the “uniform distribution” line in Figure 9 (right).

Figure 9 shows that the p-recv mode achieves the highest
coverage, but this observation obscures an important issue
for testing. Our p-recv implementation covers all orderings,
but chooses them in a biased, purely deterministic fashion.
Contrast this behavior to a hypothetical “ideal” perturba-
tion process in which, at each trial, we select a message
ordering uniformly at random without replacement. Our
p-recv will not approximate this ideal at trial counts signif-
icantly less than required for exhaustive coverage.

We have observed anecdotally in separate runs (not shown)
that the “normal” case is sensitive to the prevailing load con-
ditions on the cluster. Although the nodes were dedicated
to our runs, the network is shared among a large number
of users. This network traffic lends a helpful perturbative
effect. In fact, Figure 9 shows the results under moderately
heavy usage; under lightly loaded conditions, we observed
the coverage in the normal case to be as low as 5–10% for
p = 8 after 5040 trials. More comprehensive runs, taken
many times a day over some period of time, would be needed
to build better statistics.

Greater message ordering coverage improves the ability
to detect the bug in the overflow problem of Figure 4. This
overflow problem will normally not fail, but when the con-
tributions are returned in such a way that the intermediate
sum exceeds the maximum value of the type (e.g., the inte-
ger type) it will fail. For example, with p = 6 only 10 out of
120 orderings causes a failure. Doing tests with 10000 trial
runs using send perturbation a failure was observed many
times, in some cases within the first 128 runs. Contrast this
result to the normal test runs where the failure was seldom
observed and in some test runs there were no failures.

4.2 Raceaddition problem
Artificially introducing a random delay in the sending of

the messages will produce a race condition and the resulting
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value will be between ’00000’ and ’11111’, reducing the time-
to-failure dramatically. Using the simple send-perturbation
module with a maximum delay of 3

10
seconds, we see all pos-

sible output values after 240 runs, with some combinations
occurring more frequently than others as shown in Figure 10.
We empirically selected the maximum delay time that pro-
duced all possible resulting values in the least number of
trial runs.

4.3 Dining philosophers
We implemented the symmetric MPI dining philosophers

protocol as described in Section 2.3. In this implementation,
the user may specify that the time spent in the thinking and
eating states be selected randomly from some distribution
(e.g., uniform or Gaussian) with a prescribed mean and stan-
dard deviation, µe and σe for the eating time, and µt and
σt for the thinking time.

We evaluated the sender-based perturbation module of
Section 3 that automatically selects the delay time, using a
4-process example where µe = µt = 0.5 sec, and σe = σt =
0.1 sec, for 1000 “meals” (i.e., 1000 successful completions
of think-eat iterations), both perturbed and unperturbed.
To detect “failure,” we allow each philsopher to time-out
(starve).2 The unperturbed runs never failed during these
trials, since since the total time in non-acquisition states
was 1.0 sec on average and the network latency relatively
small (5 µs). By contrast, the perturbed example failed
many times, with a mean-time-to-failure of 35.5 think-eat
iterations, while incurring an overall execution time penalty
of 1.5× (i.e., in the perturbed case, the average think-eat
iteration took 1.5 sec instead of 1 sec). Thus, we significantly
improve the probability that the error occurs.

4.4 Convergence loop
We implemented the convergence loop model problem as

described in Section 2.4, and ran a number of experiments
at various values of p. We compare the empirically observed

2Umpire [15] can now detect these deadlock conditions pre-
cisely if they are manifested in the actual message ordering.

relative frequency of the bug occurring under no perturba-
tion to sender- and receiver-side perturbation. For sender-
side perturbation, we use a maximum delay time of 500µs.

For each p-process experiment, we use an automated search
process to choose randomly all the individual elements of the
sum and a suitable predicate, cond(s), so that the probabil-
ity of failure, assuming all message orderings are equally
likely, lies in some desired range. A failure occurs when two
or more processors disagree about the result of the predi-
cate. We fix the number of iterations of the outer-loop to
be 2 · p!, instead of terminating the loop on cond(s) = false
as shown in Figure 6. We then observe cond(s) to see when
the processes disagree. Thus, each experiment produces a
“failure rate” taken over the 2·p! trials. We repeated this ex-
periment 30 times for each run mode, using the same initial
data in each experiment. We present statistics on the failure
rate under uncontrolled environmental noise conditions.3

The boxplots in Figure 11 show the distribution of the
failure rate under each run mode, for p = 4 (left) and p = 8
(right). Higher failure rates mean a the bug is more likely
to occur. We chose the initial data so that the theoretical
failure rate is approximately 30.6% for p = 4 and 8.1% for
p = 8, assuming all orderings are equally likely. The theo-
retical failure rate is the dashed horizontal line in each plot.
The horizontal line in each box is the median failure rate in
the 30 experiments, the box’s vertical extents indicate lower
and upper quartiles, and the whiskers show fences beyond
which points (shown as asterisks) are outliers. The notches
in each box show 95% confidence intervals about the median.

For both p = 4 and p = 8, the median failure rate for
the normal mode is much lower than for p-send. Indeed,
the normal median failure rate is 0: the bug never occurs
at least half the time. Nonetheless, this mode exhibits the
bug with high frequency for some experiments with p = 4
since there are inherently many such cases (30.6%) and any
systematic/inherent bias toward certain orderings has a high
probability of including one of the error cases. For p = 8,
the inherent probability of detecting the error is much lower
(8.1%). Thus, in only two instances (the outliers) did the
failure rate exceed 4% without perturbation. By contrast,
the send perturbations achieve the expected failure rates
(as desired), with the expected rate at or just within the
confidence interval.

The p-recv mode does as well as the p-send. Of course, the
deterministic p-recv mode yields the same behavior on all
runs. When p = 8, it does not achieve the naturally occur-
ring rate. Our implementation is not “tuned” for this prob-
lem: the p-recv mode is independent but deterministic on
all processes, and so the returned message orderings are cor-
related. For example, process 0 will always see the sequence
(1, 2, 3, 4, 5, 6, 7) when process 1 sees (0, 2, 3, 4, 5, 6, 7) and 2
sees (0, 1, 3, 4, 5, 6, 7), and so on. For practical bug detection
support, the p-recv mode should implement the bookkeep-
ing required to approximate a uniform distribution without
replacement of possible message orderings.

5. EXTENSIONS AND OTHER TOOLS
We now explore the overall broader context of our research

into perturbation and its combined use with other MPI test-

3For example, we do not control what physical nodes are
allocated to our job in this shared cluster, and cannot pre-
vent network traffic from nearby nodes from influencing our
experiments.
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Figure 11: Examples of the frequency of bug occurrence in the convergence loop model problem under
floating-point addition for p = 4 (left) and p = 8 (right). The dashed horizontal line in each plot is the
theoretical probability of the bug, assuming all message orderings are equally likely.

ing tools. Specifically, we ask what other tools, techniques,
and algorithms will improve testing and debugging of MPI
programs. The P

N
MPI infrastructure allows us to combine

arbitrary and independent layers; we anticipate a variety of
dynamic analysis and testing techniques, including capture
layers in capture and replay-based test sessions, or layers
that provide hooks to coverage analysis tools. We discuss
these direct extensions of this work in Section 6. Here, we fo-
cus on useful tools for detecting bugs in MPI usage directly,
using deep static analysis combined with dynamic analysis,
and using the ROSE source-to-source compiler infrastruc-
ture as a basis for building such tools [13].

The MPI standard is a large and complex API that can
easily be used incorrectly, particularly with the most recent
additions of 1-sided communication and I/O in MPI-2 [12].
Static bug-pattern detectors, which require little or no pro-
gram analysis could readily be applied to find simple MPI
usage errors, such as incorrectly specifying the type of data
passed into an MPI send or receive call. Extensions to many
existing tools could support MPI specifically, including those
proposed by Farchi, et al., in the context of code reviews [6],
and frameworks like FindBugs for general programs [7].

Although MPI-CHECK statically locates certain classes
of MPI errors [10], we need deeper program analysis and de-
tailed knowledge of the semantics of MPI to find many other
kinds of MPI errors statically. For example, the control-flow
of typical MPI programs depends on the unique rank of the
process (line 4 of Figure 5 being a common pattern); this
could be used to help match calls, such as sends and re-
ceives, barriers or other collectives. Conversely, we could
find errors due to improper or non-existing call matchings.
Dependence analysis could trace the flow of data that passes
through MPI, and thereby check for common buffer errors
in MPI programs, such as buffer overruns, reading from a
receive buffer before a non-blocking receive completes, and
using unitialized buffers, among others [3]. Other analy-
sis and model checking approaches could be used to verify
temporal usage properties (e.g., non-blocking sends followed

by waits), similar to recent work for I/O, operating system
kernel, and threading library abstractions [5, 2].

Additional classes of tools are possible given the ability to
instrument and transform the application in an automated
fashion. For instance, consider that within a P

N
MPI layer,

each call only sees its context through the parameters passed
to the MPI call. With a static analysis and instrumentation
capability, it is possible to create callee-specific PMPI mod-
ules and combine them using the P

N
MPI infrastructure into

a single experiment. Such a capability would allow passing
of additional, context-specific information to the tool layer
to be used for testing.

6. CONCLUSIONS AND FUTURE WORK
The irritator techniques first used in IBM’s ConTest tool

for multithreaded programs apply naturally to MPI appli-
cations. We are actively identifying additional MPI usage
patterns amenable to these techniques, extending the Jit-

terBug implementation to be more complete (particularly
with respect to receiver-side perturbations), and applying
this work to applications beyond the model problems.

Though we argue perturbation is an important technique
for improving the quality of tests, perturbation does not di-
rectly address the problem of automated detection. We view
JitterBug as just one basic component in a more compre-
hensive MPI application testing package that includes inte-
gration with tools such as Umpire for MPI checking, cover-
age tools, and capture-replay tools, just as irritators are a
component of ConTest. We are pursuing the combined use
of these tools for MPI applications, using the P

N
MPI as an

essential framework for their use and development.
This paper considers what may be viewed a simple cover-

age model for MPI receive-any operations in which the goal
is to realize all possible message orderings. We wish to de-
velop true coverage models suitable for MPI, in the spirit of
those developed for multithreaded applications [1].
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