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ABSTRACT
Large software projects contain significant code duplication,
mainly due to copying and pasting code. Many techniques
have been developed to identify duplicated code to enable
applications such as refactoring, detecting bugs, and pro-
tecting intellectual property. Because source code is often
unavailable, especially for third-party software, finding du-
plicated code in binaries becomes particularly important.
However, existing techniques operate primarily on source
code, and no effective tool exists for binaries.

In this paper, we describe the first practical clone detec-
tion algorithm for binary executables. Our algorithm ex-
tends an existing tree similarity framework based on cluster-
ing of characteristic vectors of labeled trees with novel tech-
niques to normalize assembly instructions and to accurately
and compactly model their structural information. We have
implemented our technique and evaluated it on Windows XP
system binaries totaling over 50 million assembly instruc-
tions. Results show that it is both scalable and precise: it
analyzed Windows XP system binaries in a few hours and
produced few false positives. We believe our technique is a
practical, enabling technology for many applications dealing
with binary code.
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1. INTRODUCTION
Code duplication is common and hinders software mainte-

nance, program comprehension, and software quality. Clone
detection, the problem of identifying duplicated code, is thus
an important problem and has been extensively studied.
Many clone detection algorithms exist [6,13,17–19,21], rang-
ing from basic string-based algorithms [6] to more sophis-
ticated algorithms based on program dependency graphs
(PDGs) [13,19].

Most existing clone detection algorithms operate only on
source code, but not on binaries. However, the ability to
detect binary clones is important because source code is not
always available, for example, in the case of commercial off
the shelf (COTS) software. One important application of
a practical clone detection algorithm for binaries is the dis-
covery of copyright infringements. A closed-source program
could, for example, include GPLed source code in violation
of its license; binary-level clone detection may be used to
find that.

Low-level binaries offer additional interesting challenges
for clone detection. First, the problem demands better scal-
ability because a single source statement is normally com-
piled down to many assembly instructions. Second, various
choices made by a compiler, such as register and storage
allocation, complicate detection. To see this, consider the
following IA-32 assembly code:

mov [0x805b634], 0x0

mov [0x805b63c], eax

add esp, 0x10

mov eax, ebx

where [0x805b634] dereferences memory location 0x805b634

(similarly for [0x805b63c]), and eax, ebx, and esp are reg-
isters. If we use the specific memory addresses or register
names for clone detection, we will likely to be too specific
and miss true clones. On the other hand, if we simply use
opcodes (i.e., mnemonics) of the instructions, we will likely
to be too general and report false clones. Third, assem-
bly instructions have a fixed, almost flat structure, while
source programs can have arbitrarily deep structures. The
rich structural information in source code is a key factor al-
lowing source-level clone detectors, such as Deckard [17], to
perform well. All these differences require novel techniques
for detecting binary clones.

In this paper, we present the first practical binary clone
detection algorithm. Our algorithm follows a general tree
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Figure 1: Disassembly and clone detection process.

similarity framework [17]: instead of performing a quadratic
number of pair-wise comparisons of instruction sequences, it
models the essential structural information of the instruction
sequences with numerical vectors and groups similar vectors
to identify clones. We present novel techniques to generate
precise and robust vectors for binaries and to compactly
represent the vectors for improved scalability.

We have implemented our algorithm and evaluated it on
Windows XP system binaries with a total of 50 million in-
structions. The results indicate that our technique is both
scalable and precise. All the Windows XP system binaries
can be processed routinely in under a few hours, and the de-
tected clones are accurate with few false positives. Roughly
20% of the code appears in at least one clone cluster, which
is consistent with results for source code [17,18,21]. We also
evaluate the correspondence of source and binary clones on
the Linux kernel, demonstrating that the binary clones our
tool detects typically are caused by real clones in the source
code. To better understand the potential of our technique,
we also consider the impact of compiler optimizations on our
results (see Section 5).

The rest of the paper is structured as follows. We first
provide a high-level overview of our algorithm (Section 2).
The detailed algorithm is presented in Section 3. Next, we
discuss the implementation (Section 4) and evaluation (Sec-
tion 5) of our algorithm. Finally, we survey related work
(Section 6) and conclude (Section 7).

2. OVERVIEW
Figure 1 shows the flowchart for our clone detection algo-

rithm. This section explains the process with the help of the
simple example from Section 1. Detailed technical descrip-
tions of the steps are be given in the corresponding sections
shown in the figure.

First, we use a disassembler to process all input binaries
and create their intermediate representations. For exam-
ple, Figure 2 shows how we represent the sample instruction

This [5] document was prepared as an account of work sponsored
in part by an agency of the United States government. Neither the
United States government nor Lawrence Livermore National Secu-
rity, LLC, nor any of their employees makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the ac-
curacy, completeness, or usefulness of any information, apparatus,
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ernment or Lawrence Livermore National Security, LLC. The views
and opinions of authors expressed herein do not necessarily state or
reflect those of the United States government or Lawrence Livermore
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Figure 2: Example intermediate representation of
disassembled binary for stride 1 and window size 3.

sequence from Section 1. Notice that each assembly instruc-
tion consists of a mnemonic (e.g., “mov”) and an operand
list (e.g., “esp, 0x10”). Our intermediate representation
preserves all binary file information, including instructions,
functions, header information, segments, etc. Section 3.1
describes the representation in more detail.

Second, the normalization step (cf. Section 3.2) creates a
normalized instruction sequence, abstracting away memory-
and register-specific information. The following shows the
normalized instruction sequence for the example:

mov MEM1, VAL1

mov MEM2, REG1

add REG2, VAL2

mov REG1, REG3

Third, we perform clone detection on the normalized in-
struction sequences. We separate the problem into two cases,
mostly for efficiency reasons. One case is exact clone detec-
tion, where only identical normalized instruction sequences
are returned. The other case is inexact clone detection,
where certain differences are tolerated. This is a compu-
tationally challenging problem. We use feature vectors to
approximate structural characteristics of the given assem-
bly instruction sequences and group similar vectors to find
clones. See Sections 3.3.2 and 3.3.3 for more details.

We now have a set of clone clusters, i.e., instruction se-
quences of a certain size1 that are considered similar. For in-
exact clone detection, the similarity threshold is user-defined
while that between instruction sequences for exact clone de-
tection is one. For instance, the clone cluster C = {seq1, seq2,
seq3} contains three similar instruction sequences, seq1, seq2,
and seq3. Two sequences within a clone cluster, say seq1 and

1This is referred to as the window as shown in Figure 2.
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seq2, may overlap substantially and should not be consid-
ered clones. Removing such spurious clones is conducted by
a postprocessing step (Section 3.4).

So far in the detection process, we consider only instruc-
tion sequences of a certain predefined length, but reporting
many small clones is not as useful as reporting a few large
ones. So, in the final step, we combine smaller contiguous
clones into larger ones. The algorithm for doing this is pre-
sented in Section 3.5.

3. ALGORITHM DESCRIPTION
This section gives a detailed description of our algorithm,

structured according to the flowchart in Figure 1.

3.1 Binary Disassembly
An assembly instruction is a pair of a mnemonic m and a

list of operands o. The mnemonic m represents the partic-
ular operation that the instruction performs, and is from a
finite set M of possible mnemonics. The list of operands
is a variable-length, but typically short, sequence of ele-
ments from the set O of possible operands. We partition
the set O of operands into three categories: memory refer-
ences (e.g., “[0x805b634]”), register references (e.g., “eax”),
and constant values (e.g., “0x10”). We do not use any of
the structure of the individual operands other than this
categorization, but we do assume the ability to compare
two operands for syntactic equality. In the following algo-
rithm descriptions, an instruction is defined as an element
of the set M × O∗, with O partitioned into Omem , Oreg ,
and Oval . We use the functions mnemonic and operands
to access the two parts of an instruction, and zero-based
subscripts (of either single elements or intervals) to indi-
cate accesses to elements or contiguous subsequences of a
sequence; the ++ operator is used to indicate sequence con-
catenation, and the + operator is used to add a single ele-
ment to a set or bag. The function type maps from O to the
set OPTYPE = {MEM ,REG,VAL} based on the particu-
lar category of an operand.

The full disassembly of a particular executable or library
is defined as a sequence of functions, with each function con-
taining a sequence of instructions. We define clones in terms
of code regions, which are simply contiguous subsequences
of the instructions of a single function, along with infor-
mation on the starting address, function, and file of that
list of instructions. We ignore that extra information for
clone detection, but it is preserved by our algorithms and
used by the postprocessing and visualization stages. We
assume that algorithms that create and/or transform code
regions implicitly process the extra information appropri-
ately. When the distinction is important, the two functions
instructions and extraInfo access the two parts of a code
region. The actual process of creating the disassembled in-
structions for a program and grouping them into functions
is implementation-specific; our particular implementation is
explained in Section 4.

We split each function of a binary into code regions us-
ing two parameters window and stride. The window is the
length of the code region to generate. The starting points
of the code regions within a function are separated by the
stride; note that code regions can, and almost always will,
overlap. For example, with window size 50 and stride 10, the
first three code regions contain instructions 0–49, 10–59, and
20–69 respectively. Algorithm 1 is used to compute the code

Algorithm 1 Generate code regions.

Input: f : Disassembled instructions for a single function
Input: w: Window size
Input: s: Stride
Output: R: The set of code regions
1: R← ∅
2: for i = 0 to length(f)− w step s do
3: thisRegion ← f[i,i+w)

4: R← R+ thisRegion

regions within a particular function. As the window size and
stride are constant for a particular run, this algorithm takes
linear time in the number of vectors produced. For a single
function F of length l, the number of vectors generated is
b(l − w + 1)/sc.

3.2 Code Region Normalization
As explained in Section 2, the particular operands used

in a code region may be specific to that code region, and
so some “fuzziness” should be allowed in clones. For exam-
ple, two regions may be identical except for certain constant
values, offsets in memory locations, or particular addresses
used as branch targets. In order to account for these differ-
ences, we normalize the instructions in a code region using
Algorithm 2. This function takes a list of instructions in the
〈mnemonic, operands〉 format and converts them to abstract
instructions of the form 〈mnemonic, abstract operands〉. An
abstract operand is a pair of an operand type (either MEM ,
REG, or VAL from the set OPTYPE) and a natural number
indicating the index of the first occurrence of that particu-
lar operand expression within the code region. The operands
are numbered separately for each operand type. The nor-
malization produces an abstract code region, which is just
a list of abstract instructions. The normalization algorithm
takes linear time in the number of instructions in the code
region, and is run once on each code region in the program.

Algorithm 2 Normalize a code region.

Input: r: Input code region
Output: r′: Output abstract code region

/* N is a mapping from OPTYPE to the sequence of
/* operands of that type seen so far */

1: N ← ∅
2: r′ ← 〈〉 with extra info extraInfo(r)
3: for all instructions i in r do
4: ops ′ ← 〈〉
5: for all operands o in operands(i) do
6: t← type(o)
7: if o is an element of N [t] then
8: idx ← zero-based index of o in N [t]
9: else

10: idx ← length(N [t])
11: N [t]← N [t] ++ 〈o〉
12: o′ ← 〈t, idx 〉
13: ops ′ ← ops ′ ++ 〈o′〉
14: i′ ← 〈mnemonic(i), ops ′〉
15: r′ ← r′ ++ 〈i′〉
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Algorithm 3 Find exact clone clusters.

Input: R: Set of abstract code regions
Output: C: Set of clone clusters, each of which is a set

of code regions
1: H ← empty hash table mapping from sequences

of abstract instructions to sets of code regions
2: for all code regions r in R do
3: add r to H[instructions(r)]
4: C ← {c ∈ values(H) : |c| ≥ 2}

3.3 Clone Detection
We define two ways to find clones among binaries: exact

matching of normalized code regions, and inexact matching
of feature vectors representing important aspects of the code
regions. Both of these algorithms use linear time and space
to find the initial set of clone clusters.

3.3.1 Definitions of Clone Pairs and Clusters
Code regions can appear in clone pairs and in clone clus-

ters. A clone pair is an unordered pair of code regions that
are “close enough” (by a metric defined later) to be consid-
ered to match. We form clone pairs into clone clusters by
finding groups of clone pairs that all contain the same nor-
malized instructions. For exact matching, and in practice
for inexact matching, the clone pair relation is transitive,
and so choosing the neighbors of an arbitrary code region is
appropriate.

For measuring the accuracy of our clone detection algo-
rithm, we define false positives and false negatives. A clone
pair is considered to be a false positive when it is found
by the clone detection algorithm and yet the normalized in-
struction sequences of the two code regions in the pair are
not identical. A clone pair is a false negative if it satisfies the
definition of a clone pair given above and yet is not found by
our algorithm. False positives and false negatives can never
appear when using exact matching of normalized instruction
sequences (by definition), but our inexact matching algo-
rithm has both types of error. In order to test the accuracy
of our algorithm, we test the inexact matching algorithm
with a distance of less than one to simulate exact match-
ing on feature vectors, and determine how well those results
match the actual exact matching algorithm. Note that two
distinct normalized instruction sequences may have exactly
the same feature vector, so there can be false positives in a
vector-based matching algorithm even when exact matches
of vectors are found.

3.3.2 Exact Clone Detection
Exact matching uses a traditional hash table on the nor-

malized instruction sequences, as shown in Algorithm 3. Al-
though this algorithm produces a set of clone clusters, the
corresponding set of clone pairs can be found by converting
the partition C into an equivalence relation. Algorithm 3
requires linear time, and produces exactly the correct set
of clone clusters (with neither false positives nor false nega-
tives).

3.3.3 Inexact Clone Detection
To find inexact clones, we adapt the basic approach devel-

oped by Jiang et al. [17] for locating source code clones. We
characterize each code region using a set F of features, each
of which identifies one property we consider important. For

Algorithm 4 regionToVector: Generate feature vector.

Input: r: Abstract code region
Output: v: Feature vector
1: b← an empty bag (multiset) of features from F
2: for all instructions i in instructions(r) do
3: b← b+ mnemonic(i)
4: for all 〈t, idx 〉 ∈ operands(i) do
5: if idx < k then
6: b← b+ 〈t, idx 〉
7: b← b+ t
8: ops ← operands(i)
9: if length(ops) ≥ 1 then

10: b← b+ 〈mnemonic(i), type(ops0)〉
11: if length(ops) ≥ 2 then
12: b← b+ 〈type(ops0), type(ops1)〉
13: v ← bagToVector(b)

example, each possible instruction mnemonic is a feature,
and each combination of the instruction’s mnemonic and
the type of the instruction’s first operand is a feature. The
features we use are local to each abstract instruction, and
can thus be evaluated independently on the instructions in
a code region. We count the number of occurrences of each
feature within a code region, producing a feature vector for
the region. Formally, a feature vector is a vector of natu-
ral numbers of length |F |, based on a fixed but arbitrary
order of the features in F . We allow feature vectors to be
indexed directly by features rather than requiring an explicit
mapping from features to vector indices.

We count the following features of an abstract instruction
or code region; F is the disjoint union of the sets given.
These five categories of features were necessary to include
in the feature vectors to accurately characterize the code:

• M , representing the mnemonic of the instruction;

• OPTYPE , representing the type of each operand in an
instruction;

• M × OPTYPE , representing the combination of the
mnemonic and the type of the first operand when one
is present;

• OPTYPE × OPTYPE , representing the types of the
first and second operands, in that order, of an instruc-
tion with at least two operands; and

• OPTYPE×Nk, representing each normalized operand
with an index under a chosen limit k.

As we treat the window size as a constant, and the num-
ber of operands in an instruction is at most a small number,
we can treat vector generation for a single code region as a
constant-time operation. The overall vector generation for a
large set of code regions is then a linear-time operation (each
region can be processed independently). Algorithm 4 pro-
duces the feature vector for a code region. The bagToVector
function creates a vector from a bag by counting the number
of occurrences of each element of F in the bag.

Once code regions have been mapped to feature vectors,
we then define the distance between two code regions as
the `1 distance between their corresponding feature vectors.
The distance between the vectors is intended to approximate
the dissimilarity between the code regions. We then define
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Algorithm 5 Find inexact clones.

Input: R: Set of abstract code regions
Input: δ: Distance to use for queries
Input: H: Empty LSH hash table set
Output: C: Set of clone clusters
1: V ← {regionToVector(r) : r ∈ R}
2: for all vectors v in V do
3: insert v into H
4: C ← ∅
5: for all vectors v1 in V do
6: if v1 /∈

S
C then

7: M ← vectorsInBucket(v1)
8: c← {v2 ∈M −

S
C : ||v2 − v1||1 ≤ δ}

9: C ← C + c
10: C ← {c ∈ C : |c| ≥ 2}

an inexact clone pair for a distance δ as an unordered pair
of code regions {r1, r2}, with feature vectors v1 and v2 re-
spectively, where ||v1 − v2||1 ≤ δ. The parameter δ affects
the similarity required between the feature vectors: having
δ < 1 requires the vectors to be identical and thus the code
regions to be almost the same, while larger distances allow
more dissimilar code regions to appear in clone pairs.

Given the space of vectors and a distance metric, we would
like an efficient way to find all vectors within a given dis-
tance from a query vector; i.e., we would like a near neigh-
bor data structure and algorithm. We follow the approach
in Deckard [17] and use locality-sensitive hashing (LSH) for
this purpose [16]. In particular, we use the set of hash
functions from [14] for the `1 distance on vectors of natural
numbers. LSH is an approximate algorithm, allowing false
negatives in order to achieve constant time and space in-
sertion and queries for distance-based matching when given
appropriate parameter choices. Our inexact clone detection
approach is shown in Algorithm 5. This algorithm requires
an empty hash table set to be passed as its input. LSH
uses two parameters to create the hash function, and they
must be chosen carefully for good performance and accu-
racy; see Section 4.2 for more information. The function
vectorsInBucket(v1) used in the code finds all vectors that
hash into the same bucket as v1 in any of the hash tables
in the LSH hash table structure; this set is the same as the
set of elements that would be searched in a near neighbor
query for the element v1 in H. Note that this algorithm pro-
duces clusters greedily in such a way that each code region
is in at most one cluster. Although the order of iteration
through the regions can change the set of clusters produced
for non-transitive neighbor relations, we assume, supported
by past literature, that the relation is transitive or close to
it. Allowing overlapping clone clusters can lead to an al-
gorithm requiring quadratic time, while the limitation to
non-overlapping clusters uses only linear time.

Although Deckard [17] uses Euclidean (`2) distances to
detect inexact clones in source code, we chose to use `1 dis-
tances instead: our data sets are very different from those
used by Deckard and required us to recompute parameters
for every group, which could be done analytically for the `1
norm more easily than for `2. Every inexact clone detection
phase is optimized by first performing exact clone detection
and thereby making sure that every distinct vector is only
represented once when doing inexact clone detection, even
if that same vector is used for several code regions. The

Algorithm 6 Remove trivial clones.

Input: C: Set of clone clusters
Input: o: Allowed fraction of overlap
Input: w: Window size
Output: C′: Post-processed set of clone clusters
1: C′ ← ∅
2: for all clusters c in C do
3: c′ ← ∅
4: for all functions f containing regions in c do
5: R← code regions from f in c
6: sort R by instruction offset within f
7: first ← >
8: lastOffset ← 0
9: for all code regions r in R do

10: offset ← offset of r within f
11: if first or offset ≥ lastOffset + o · w then
12: c′ ← c′ ∪ {r}
13: lastOffset ← offset
14: first ← ⊥
15: if |c′| ≥ 2 then
16: C′ ← C′ + c′

results of the exact and inexact clone detection are merged
when both runs are finished.

3.4 Removing Trivial Clones
When the stride s used to generate code regions is smaller

than the window size w (i.e., the length of each code region),
it is possible that two code regions in the same function al-
most completely overlap with each other. As the feature
vector generation is almost independent of the order of the
instructions, it is likely that these two regions would be de-
tected as a clone pair. However, such a pair is not interesting
as it is effectively stating that a region of code is a clone of
itself. We define a parameter o that indicates the fraction of
instructions that two regions can have in common and still
be considered a legitimate clone pair, and reduce the set of
clone clusters using Algorithm 6.

It is unclear what it means when two overlapping code re-
gions r and r′ are considered clones. In our experiments we
have decided on an overlap of 50 percent or less. Although
a few of the clones that are not filtered out can be consid-
ered false clones, we are more concerned with completeness
of our clone-set than this problem. If it is desirable to do
so, filtering out all overlapping regions can be done just by
changing o.

This algorithm is finding the maximum independent set
of an interval graph (the graph of overlapping vectors within
a single clone cluster and function), a problem that can
be solved using sorting in O(n logn) time and O(n) space.
Here, the nonlinear term is only applied to those code regions
that are both within the same clone cluster and the same
function, making the algorithm effectively linear in practice.

3.5 Finding Largest Clones
Finding the largest sequences of instructions A and B that

are part of a clone pair {A,B} is important to avoid an over-
estimate in the reported number of clones. Since there are
overlapping vectors A and A′ in the set of vectors in C, we
must expect that the number of clones and the total number
of vectors in the clones are overestimates. For instance, if
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Algorithm 7 Estimate the largest clone pairs.

Input: L: Sequence of clone pairs
Output: L: Set of largest clone pairs
1: sort L using the order in the text
2: n← ∅
3: L′ ← {∅}
4: for all n′ in L do
5: if overlap(n, n′) then
6: n← join(n, n′)
7: else
8: L′ ← L′ + n
9: n← n′

10: L← (L′ + n)− {∅}

there is a sequence of length n (n ≥ w) that matches be-
tween functions f1 and f2 then it will be represented by up
to b(n−w)/sc+ 1 clusters in C. If n is 500, the window size
w is 40, and the stride s is 1, that single logical clone pair
becomes 461 pairs in the output.

Algorithm 7 finds the largest clone pairs {a, b}, but does
not find the largest clone clusters. Clone pairs can be gen-
erated from a clone cluster by taking all unordered pairs
of distinct code regions from the cluster. There may be a
quadratic number of clone pairs from a single clone cluster,
although clusters are typically not large. The algorithm re-
lies on a total order among code regions; the code regions are
first ordered by the functions containing them, and then by
the instruction offset within each function. The algorithm
assumes that a is less than b in each clone pair. We sort the
clone pairs according to the two elements of the pair in that
order. Sorting ensures that if there are two sequences in A
and B that overlap then all clone pairs for those sequences
will be adjacent in the list.

Given a sorted list we do a linear search over the list of
clone pairs where clones in sequence that overlap are joined
into a larger clone pair. We define two clone pairs {a, b} and
{a′, b′} to be overlapping if the code sequence corresponding
to a overlaps with a′ and b overlaps with b′.

When joined, the two clone pairs are then replaced by
a larger (covering more code) clone pair. The joining is
inherently optimistic and assumes that if two overlapping
clone pairs are joined then the joined pair is also a clone. We
expect this to create false positives, but since the number
of those larger clones is small, it is cheap to run a more
expensive algorithm on the joined pairs in order to remove
false positives.

The computational complexity of Algorithm 7 isO(n logn)
where n is the number of clone pairs, as sorting is the most
computationally complex task. The number of clone pairs
is itself O(m2N) in the worst case, where N is the number
of clone clusters, and m is the size of the largest clone clus-
ter. The actual number, however, is proportional to the sum
of the squares of the clone cluster sizes, and the number of
large clone clusters is expected to be small.

4. IMPLEMENTATION
We implemented our algorithms in a clone detection tool

that uses IDA Pro [1] for disassembly and is therefore ca-
pable of interpreting both ELF (Linux) and PE (Windows)
executable formats. Although in this study we selected IDA

Pro as a front-end for disassembling the binaries and locat-
ing functions within them, our implementation does not rely
on it.

Our clone detection and analysis system is implemented
in C++ and uses a SQLite (version 3) database for commu-
nication. Each phase of the analysis is implemented as a
separate program, allowing new analyses to be added mod-
ularly. The first pass converts a set of disassembled functions
and instructions from IDA Pro into the ROSE intermediate
representation [23], and from there to both feature vectors
and abstract assembly instructions, which are inserted into
the database. Based on the database, either exact or inex-
act clone detection may be run to produce a new table of
clone clusters, which may be operated on by post-processing,
largest clone detection, or clone visualization.

4.1 Memory and Computational Efficiency
The dimensionality of our feature vectors is 26 times larger

for binaries than for the vectors used for source code in
Deckard [17]. The memory usage and computational com-
plexity of LSH thus increase by at least 26 times when using
LSH on object code as compared to source code. Since each
dimension takes at least one byte, and often more, it is nec-
essary to create a compressed representation for large data
sets.

We made the observation that our feature vectors are
sparse and largely consist of small numbers. For example,
we define a large set of features F that includes features such
as the number of references to the 80th memory reference
in a code region; it is unlikely that there are 80 memory
references in a region, and so this element of the feature
vector is almost always zero. Since we only generate the
data set once and use it many times, it is beneficial to con-
struct a compressed representation once and reuse it, saving
disk and memory space. Because zero elements in the vec-
tor are handled specially, they can also be skipped in some
computations to save CPU time.

We use a compressed representation that run-length en-
codes contiguous sequences of zero elements in the vector,
plus encodes numbers using variable numbers of bytes based
on the values of the particular entries. Several contiguous
vector elements that are each near zero can also be packed
into a single byte. Experimentally, we have shown that this
technique can use 17 to 36 times less space to store the same
set of vectors. Generally, computation time is traded for
memory when using compressed representations, but we are
able to operate on the compressed vectors directly and thus
take advantage of the fact that many vector elements are al-
ways zero to save computation in the vector kernels used by
LSH (dot products, element extraction, norm computation,
etc.), as well as not requiring time or storage for decompres-
sion. We store vectors in compressed form both on disk and
in memory. Without compressing the vectors, our data sets
would require hundreds of gigabytes of disk space; compres-
sion allows the same data sets to be processed entirely in
memory if desired.

4.2 LSH Parameter Tuning
If a family of LSH hash functions H is used to find clones

in O(n logn) time then the parameters controlling the prob-
abilities of two similar elements colliding must be carefully
chosen [4]. An LSH data structure consists of l independent
hash tables, each containing the same data but a different

6



hash function; each hash function is built from k compo-
nents. These two parameters determine the runtime and
accuracy of the algorithm. The general rule is that a larger
k increases the false negative rate while a larger l increases
the collision rate (i.e., the percentage of elements scanned
in the query but that are not within the desired distance).
LSH’s memory usage is thus proportional to l, even with the
number of buckets and bucket size fixed. The k parameter
does not affect memory usage substantially, and has only a
minor impact on the time used for hash table operations;
however, the value of k determines how many results are
returned for a given query, leading either to unnecessary,
failing distance tests or false negatives.

Parameter selection was challenging for our dataset since
the dimensionality of our dataset is 26 times larger than in
Deckard [17]. Our dataset has large distances between dif-
ferent vectors, and in particular the `1 norms of the vectors
in our data set vary. We observed through experiments that
LSH does not handle such data sets well, and thus we ap-
ply LSH separately to sets of vectors grouped using their
`1 norms, as is done in Deckard [17]. Groups are chosen to
overlap such that any two vectors that are within the dis-
tance bound δ are in at least one group together. We also,
based on Deckard [17], use similarity values as a measure
of the level of matching between clones; it is converted to a
distance bound for each group based on that group’s small-
est `1 norm. We then choose each group’s LSH parameters
individually.

The experimental approach for selecting parameters as
done in [3] is not viable for our application, and so we choose
optimal parameters for LSH analytically using the approach
from [25]. We use their model of LSH behavior to define
a function from k, l, and the distance d between two vec-
tors to find the probability of one being found in a query
for the other. Assuming a uniform distribution of distances
between vectors, we add the probability that vectors within
the distance bound will not be found (false negatives) and
the probability that vectors outside it will be found (colli-
sion rate). This sum provides a score for that particular set
of parameters. We then use the cost model from [25] to esti-
mate the time used for the given set of parameters, and vary
k to optimize the cost for a given level of accuracy. We find
l using a formula given in [25]; we can choose l to achieve
an arbitrarily low false negative rate.

4.3 Experimental Setup
We performed a large scale study on our clone detection

tool using the disassembled representations of the Windows
XP system executables and libraries. All runs were done
on a workstation with two Xeon X5355 2.66 GHz quad-core
processors and 16 GiB of RAM, of which we use one core for
our experiments. We have a 4-disk RAID with 15,000 RPM
300 GB disks. The machine runs Red Hat Enterprise Linux
4 with kernel version 2.6.9-78. None of our runs used more
than 4 GiB of memory for inexact clone detection; we do
not apply grouping for exact clone detection, and keep all of
the data in memory simultaneously, but applying grouping
would be trivial.

5. EXPERIMENTAL RESULTS
In this section we evaluate our tool using a large-scale

study on the Windows XP system libraries for various win-
dow sizes. According to Table 1, there are many small func-

Table 1: Functions and files with ≥ 1 code region.

Window Size # of files # of functions

500 863 7,072
200 1,486 42,819
120 1,633 97,588
80 1,681 168,224
40 1,722 342,874

Table 2: Clone statistics.
Window Size Vectors Clusters Clones

500 2,588,507 206,785 704,263
200 7,963,384 587,582 2,039,093
120 13,130,524 966,604 3,419,038
80 18,304,493 382,023 1,227,669
40 27,946,044 2,368,355 8,636,593

tions that do not contain any code regions larger than length
40. Approximately 2/3 of the 1,108,535 functions in Win-
dows XP system files have fewer than 40 instructions, and
thus cannot be tested for clones using that window size.
Reducing the window size would allow these functions to
be covered by the algorithm. There are relatively few files,
however, that have functions with 40 instructions but do not
have any functions with 200 instructions.

5.1 Clone Quantity
For a range of different window sizes, we evaluated how

many code regions, clone clusters, and clones (code regions
in a clone cluster) are produced by our algorithm; this data
is shown in Table 2. We also used code coverage by clones
(the percentage of the original instructions that are in at
least one clone) as a measure of clone quantity.

Figure 3 shows that the code covered increases with de-
creasing similarity for all window sizes, but the total cover-
age is much larger for smaller window sizes. The total cov-
erage decreases with increasing window size because many
smaller functions do not contain enough instructions to fill
one code region, as each must be within a single function;
also, smaller regions of code may be clones even when they
are contained in larger regions that are not. When the sim-
ilarity is decreased, the amount of code covered by clones
tends toward the amount covered by code regions. For in-
stance, the maximum possible coverage is 12% for window
size 500 and 32% for window size 200 for any similarity.

Table 3 shows that when the window sizes increase the av-
erage size of the clone clusters decreases. This validates the
intuition that larger instruction sequences are more unique
than shorter instruction sequences.

Table 3: Sizes of clone clusters.
Window Size > 2 > 4 > 16 > 64 > 128

500 69,775 16,705 2,420 531 0
200 196,540 59,336 5,694 905 11
120 325,010 105,773 10,007 1,404 125
80 467,737 157,983 15,442 2,117 337
40 798,272 286,066 32,585 3,919 890
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Figure 3: Total clone coverage.

5.2 Clone Quality
We evaluate two different aspects of clone quality. First,

we evaluate the quality of the binary clones relative to source
code clones on Linux kernel 2.6.27-9. Second, we evaluate
the accuracy of the clones found using the `1 norm com-
pared with those found by plain hashing of the normalized
assembly instructions.

During the steps from parsing the source code to assembly
the compiler performs several steps that transform the code
using optimization heuristics, and some compilers normal-
ize the parsed representation of multiple languages into a
common intermediate representation (e.g., GCC). For many
applications it is important that there is a mapping from
the binary clones to the source code. Clones caused by these
compiler artifacts cause two functions to be related by clones
in the binary when they are not considered clones in the
source code. It is also possible, but less likely, that clones in
the source code do not appear as clones in the binary; this
case happens when the contexts of the two code sections are
different enough that they are optimized differently.

To evaluate the quality of the binary clone pairs, we in-
spect the source code of their containing functions. If there
is a clone relationship between the functions in the source
code, we decide that it is a true clone. For this particular
study, we chose to evaluate the binary clones found in the
Linux kernel compiled with default compiler flags (-O2 plus
extra optimizations).

Table 4 shows the result of a human oracle inspecting the
binary clones from exact clone detection runs using vari-
ous window sizes. No matter how many clones there are
that connect two functions, they are still represented by one

Table 4: Manual analysis of the quality of exact code
clones for Linux kernel 2.6.27-9 optimized with de-
fault flags (-O2).

Window Size 80 200 500

Trivial 166 20 2
Inlining 15 1 0
Macro 29 0 0

Same source 93 30 9
Unknown 29 3 0

Total 332 54 11

number in the table. The function clones are categorized by
the cause of the binary clone, where “trivial” means that the
binary clone corresponds to a source code clone.

For complicated functions it is hard to determine if a clone
is caused by inlining, a macro call, or compiler artifacts so
we classify the cause as unknown. All the unknown clones
will in the worst case be caused by compiler artifacts, but
this is probably not true in general.

The Linux kernel uses kernel modules for drivers. Many
drivers are created using code copying, and in some cases
where two kernel modules are not meant to be loaded at
the same time they partly share source code. These kernel
modules will have functions that correspond to the same
function in the source code.

Table 5: Clones not matching between the `1 norm
and exact hashing, and clone coverage.

Window Size Mismatch Rate (%) Coverage (%)

500 3.3 3.0
200 2.9 7.9
120 2.9 12.5
80 2.9 17.1
40 3.2 27.8

Second, we evaluate how well binary clones found using
exact matching on feature vectors match clones found using
exact hashing on the normalized instruction sequences. We
define a mismatch as any code region that is in a clone cluster
(as defined by exact matching of feature vectors) but has a
different normalized instruction sequence from the plurality
of code regions in that cluster; this metric is simply count-
ing all mismatched clone pairs (as defined in Section 3.3.1)
between each clone within the cluster and a single element
having the plurality instruction sequence. This metric shows
how well feature vectors characterize normalized instruction
sequences. Manual inspection of the clones found by our in-
exact clone detection found similar sequences of instructions
for large window sizes, with less accurate results for smaller
window sizes as one expects. We found our mismatch rate
to be low as shown in Table 5. When only using mnemonics
for detecting code clones, rather than the other features we
consider, the mismatch rate is high as shown in Table 6.

5.3 Impact of Compiler Optimization
There is a large body of code available for reuse under

open source licenses. These licenses put certain restrictions
on how it can be reused. It is for instance not permitted to
reuse GPL-licensed code in closed-source projects. Because
the source code is typically not available for the violating
projects, such license violations can be difficult to detect,
and infringing authors feel safe by only making the binaries
available.

In general these authors can apply arbitrary obfuscation
techniques, but according to gpl-violations.org [15], the
common practice is that the source code is not changed.
Compilation using different compilers and compiler options
will usually generate different assembly code from the same
source code. We empirically validated this in the following
experiment.

The impact of compiler optimizations in terms of binary
clones is determined by inspecting the assembly code. For
our particular evaluation we chose to compile Linux kernel
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Table 6: Mismatch rates using only mnemonics.

Window Size Mismatch Rate

500 15.54
200 16.92
120 18.31
80 19.19
40 26.08

2.6.27-9 multiple times using different compiler options. We
then look at the same function, compiled with the different
sets of options, and test whether that pair share at least one
clone. Using specific window sizes, Table 7 shows how many
functions are considered clones of themselves when compiled
with -O1 and -O2 using GCC. There are no clones between
the code generated with -Os and the code generated with
-O1 and -O2. This is reasonable since -Os optimizes for size
while -O1 and -O2 optimize for speed. The results confirm
that compilers may produce substantially different code with
different compiler options.

Table 7: -O1 vs.-O2: Impact of compiler optimization
on clone detection for the Linux kernel, window size
along y axis.

Similarity 1.0 0.98 # possible functions

80 99 430 13899
200 20 115 4675
500 5 39 1134
1000 1 32 1000

Given N compilers with M sets of compiler options, there
are potentiallyN×M different assembly sequences that need
to be detected. For projects where the source code is avail-
able, this problem can be overcome with a linear increase in
clone detection time by compiling the code using available
compiler options under different compilers.

5.4 Scalability
We show that our tool is scalable by doing a large-scale

study on the Windows XP system files for similarities be-
tween 0.90 and 1.0, where 1.0 is exact clone detection on
normalized instructions and the others are inexact match-
ing on vectors. For all the window sizes used in this study
the stride is 1. The vectors are stored in a database for each
stride and window size. This database is generated once
and reused later. Table 8 shows that our vector generation
algorithm is scalable.

Table 8: Vector generation time (minutes).

Window Size VecGen

500 225
200 247
120 254
80 275
40 277

Figure 4 shows that our tool detects clones scalably on our
vector database for all window sizes. The runtime seems

Figure 4: Clone detection time (in minutes).

to increase as expected for an O(n logn) algorithm (for n
vectors); two factors contribute to an increase in the data
set size: decreasing window size leading to more vectors, and
decreasing similarity grade leading to a higher likelihood of
hashing vectors into the same bucket. The runtime varies for
the same window size due to the load from other processes
on the machine. Because exact and inexact clone detection
use different algorithms, their run times differ; in particular,
exact matching uses a much faster algorithm than inexact.

5.5 Estimation of Largest Clone Size
Using Algorithm 7, we estimate the largest clones for ex-

act clone detection. Unlike all other algorithms, finding the
largest clones produces a set of clone pairs instead of a set of
clusters. Table 9 shows that smaller window sizes generate
clone pairs that combine to form larger clones. Because a
data set generated using a small window size covers a smaller
part of a larger clone it is expected that the combination of
the smaller clone pairs will be an overestimate of the num-
ber of larger clones, but the table shows that this is only a
slight overestimate for all window sizes except 40.

5.6 Visualization of Clone Clusters
Figure 5 illustrates our clone detection efforts on Windows

XP. Green boxes represent clones and all other colored boxes
represent files within the system32 directory in Windows
XP. The height of a clone (green box) represents the number
of clones detected between a set of files. The height of a file
represents the number of functions in that file that are clones
with other functions (contained in other files); i.e., the more
clones a file has, the larger the box. The boxes’ widths
are determined from their labels. Different subdirectories
within the system32 directory are illustrated with different
colors. For instance, the drivers directory is yellow and the
usmt directory is orange. The image reveals that much of
Windows XP is somewhat related, i.e., many clones exist.

Table 9: Sizes of largest clone pairs with exact clone
detection.

Window Size > 40 > 80 > 200 > 500 > 1000

500 5,569 5,569 5,569 8,799 5,377
200 89,888 89,888 89,888 8,965 5,406
120 299,933 299,933 83,940 9,113 5,441
80 640,186 640,186 108,766 9,256 5,472
40 2,440,286 931,672 178,871 12,335 5,578
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Figure 5: Clone visualization of Windows XP.

Figure 6 shows portions of Figure 5 in more detail. For in-
stance, clone 37 reveals the relationship between Windows
VPN components, such as CVPNDRVA.sys, vpnapi.dll, and
CSGina.dll (which can use VPN functionality). Similarly,
clone 166 reveals a clone relationship between the different
Windows Management Instrumentation components. Clone
986 is another clone detected by our tool that contains,
amongst others, the Windows system information applica-
tion systeminfo. It appears that systeminfo shares func-
tionality with the system applications tasklist, taskkill,
and getmac. All results illustrated in Figure 5 and Figure 6
use a window size of 120 for clone detection.

6. RELATED WORK
The most closely related work to ours is by Schulman [24]

to find duplicated instruction sequences in a large set of bi-
naries. Mnemonics and API calls are used to find binary
clones. This approach is inaccurate as it insufficiently cat-
egorizes the instruction sequences in a program. Besides
Schulman’s work, we are not aware of any previous research
on the topic.

Our work is also related to the large body of work on mal-
ware detection and analysis [9–12, 20, 27], where the goal is
to decide whether an unknown piece of binary is malicious
or not. The common setting is that there are a large number
of known malware samples and the problem is to determine
whether the unknown malware is a polymorphic or meta-
morphic variant of any of the known samples. The work
can be classified as either signature-based (e.g., using reg-
ular expression matching of binary code) or behavior-based
(e.g., using runtime behavior, such as sequences of system

calls, for matching). The key difference is that in binary
clone analysis, it is not to analyze a single, usually small,
binary against a set of other code, but to find all possi-
ble matches among a collection of, potentially large, binary
code. Thus, the scalability requirement is much greater for
binary clone analysis. This paper provides the first scalable
and accurate algorithm for the problem. We do not however
consider obfuscations beyond leveraging different compilers
or compiler options, and it is an open question whether it is
feasible to scale more expensive malware analysis techniques
to the setting of binary clone detection.

Our work is also related to source-level clone detection to
find duplicated source code. This is a well explored topic,
and many scalable and precise tools exist to solve this prob-
lem. Some tools are tailored toward finding plagiarism, such
as Moss [22] and JPlag [2]. Others are more tailored for soft-
ware engineering applications such as refactoring and defect
detection. Tools such as CP-Miner [21] and CCFinder [18]
are token-based and usually more accurate and scalable, but
tend to be sensitive to minor code changes. There are also
tools based on abstract syntax trees (ASTs) [7, 8, 17, 26].
However, all the above tools are for source code, while ours
is the first practical clone detection algorithm for binaries.
In particular, we adapt the framework of Jiang et al.’s work
on Deckard [17] and introduce precise and compact feature
vectors to capture essential structural characteristics of bi-
naries.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a novel clone detection

algorithm for binaries. We have implemented the algorithm
and conducted a large-scale empirical evaluation of it on
the system files from Windows XP. Results show that it is
scalable and precise, and thus practical to enable many ap-
plications on binaries. For future work we plan to conduct
further studies with our technique, for example, by analyzing
different versions of Windows and other operating systems,
and other application components such as Microsoft Office.
We also plan to apply our technique to a number of applica-
tion domains such as detecting latent bugs and a large scale
study on protecting intellectual property.
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