A ROSE-based OpenMP 3.0 Research Compiler
Supporting Multiple Runtime Libraries *

Chunhua Liao , Daniel J. Quinlan , Thomas Panas and Bronis R. de Supinski

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
Livermore, CA 94551
{1iao6,dquinlan,panas2,desupinskil}@llnl.gov

Abstract. OpenMP is a popular and evolving programming model for
shared-memory platforms. It relies on compilers to target modern hard-
ware architectures for optimal performance. A variety of extensible and
robust research compilers are key to OpenMP’s sustainable success in
the future. In this paper, we present our efforts to build an OpenMP 3.0
research compiler for C, C++4, and Fortran using the ROSE source-to-
source compiler framework. Our goal is to support OpenMP research for
ourselves and others. We have extended ROSE’s internal representation
to handle all OpenMP 3.0 constructs, thus facilitating experimenting
with them. Since OpenMP research is often complicated by the tight
coupling of the compiler translation and the runtime system, we present
a set of rules to define a common OpenMP runtime library (XOMP) on
top of multiple runtime libraries. These rules additionally define how to
build a set of translations targeting XOMP. Our work demonstrates how
to reuse OpenMP translations across different runtime libraries. This
work simplifies OpenMP research by decoupling the problematic depen-
dence between the compiler translations and the runtime libraries. We
present an evaluation of our work by demonstrating an analysis tool for
OpenMP correctness. We also show how XOMP can be defined using
both GOMP and Omni. Our comparative performance results against
other OpenMP compilers demonstrate that our flexible runtime support
does not incur additional overhead.

1 Introduction

OpenMP [1] is a popular parallel programming model for shared memory plat-
forms. By providing a set of compiler directives, user level runtime routines and
environment variables, it allows programmers to express parallelization oppor-
tunities and strategies on top of existing programming languages like C/C++
and Fortran. As a proliferation of new hardware architectures becomes available,
OpenMP has become a rapidly evolving programming model; numerous improve-
ments are being proposed to broaden the range of hardware architectures that it

* This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07TNA27344.

can accommodate. A variety of robust and extensible compiler implementations
are the key to OpenMP’s sustainable success in the future since an OpenMP
compiler should deliver portable performance. Open source OpenMP compilers
permit active research for this rapidly evolving programming model.

Developed at Lawrence Livermore National Laboratory, the ROSE com-
piler [2] is an open source compiler infrastructure to build source-to-source pro-
gram translation and analysis tools for large-scale C/C++ and Fortran applica-
tions. Given its stable support for multiple languages and user-friendly interface
to build arbitrary translations, ROSE is particularly well suited to build refer-
ence implementations for parallel programming languages and extensions. It also
enables average users to create customized analysis and transformation tools for
parallel applications. In this paper, we present our efforts to build an OpenMP
research compiler using ROSE. Our goal is to support OpenMP research for
ourselves and others. For example, we have extended ROSE’s internal represen-
tation to represent the latest OpenMP 3.0 constructs faithfully and to facilitate
their manipulation; allowing the construction of custom OpenMP analysis tools.

More generally, the tight coupling of the compiler translations and the run-
time system upon which they depend often complicate OpenMP research. Chang-
ing the existing compiler translations to utilize a new runtime library (RTL)
usually requires significant effort. Conversely, changing the RTL when new fea-
tures require support from compiler translations can be difficult. This tight cou-
pling impedes research work on the OpenMP programing model. We seek to use
ROSE as a testbed to decouple compiler translations from the OpenMP runtime
libraries. We have designed and developed a common RTL interface and a set
of corresponding compiler translations within ROSE. As a preliminary evalua-
tion, we demonstrate an OpenMP analysis tool built using ROSE and the initial
performance results of ROSE’s OpenMP implementation targeting the OpenMP
RTLs of both GCC 4.4 and Omni [3] 1.6.

The remainder of this paper is organized as follows. In the next section, we
introduce the design goal of ROSE and its major features as a source-to-source
compiler framework. Section 3 describes the OpenMP support within ROSE,
including internal representation, a common RTL, and translation support. Sec-
tion 4 presents a preliminary evaluation of ROSE’s OpenMP support. We discuss
related work in Section 5 while we present our conclusions and discuss future
work in Section 6.

2 The ROSE Compiler

ROSE [4,2] is an open source compiler infrastructure to build source-to-source
program transformation and analysis tools for large-scale C/C++ and For-
tran applications. It also has increasing support for parallel applications using
OpenMP, UPC and MPI. Similar to other source-to-source compilers, ROSE
consists of frontends, a midend, and a backend, along with a set of analyses and
optimizations. Essentially, it provides an object-oriented intermediate represen-
tation (IR) with a set of analysis and transformation interfaces allowing users

to build translators, analyzers, optimizers, and specialized tools quickly. The
intended users of ROSE are experienced compiler researchers as well as library
and tool developers who may have minimal compiler experience.

A representative translator built using ROSE works as follows (shown in
Fig. 1). ROSE uses the EDG [5] front-end to parse C (also UPC) and C++
applications. Language support for Fortran 2003 (and earlier versions) is based
on the open source Open Fortran Parser (OFP) [6]. ROSE converts the interme-
diate representations (IRs) produced by the front-ends into an intuitive, object-
oriented abstract syntax tree (AST). The AST exposes interface functions to
support transformations, optimizations, and analyses via simple function calls.
Our object oriented AST includes analysis support for call graphs, control flow,
data flow (e.g., live variables, def-use chain, reaching definition, and alias analy-
sis), class hierarchies, data dependence and system dependence. Representative
program optimization and translation interfaces cover partial redundancy elimi-
nation, constant folding, inlining, outlining [7], and loop transformations [8]. The
ROSE AST also allows user-defined data to be attached to any node through a
mechanism called persistent attributes as a way to extend the IR to store ad-
ditional information. The ROSE backend generates source code in the original
source language from the transformed AST, with all original comments and C
preprocessor control structures preserved. Finally, ROSE can call a vendor com-
piler to continue the compilation of the generated (transformed) source code;
generating a final executable. ROSE is released under a BSD-style license and is
portable to Linux and Mac OS X on IA-32 and x86-64 platforms.

C C—++ ortran/ EDG Front-end/
OpenMP/UPC Open Fortran Parser
EDG/Fortran-to-
ROSE Connector
Vendor Program

Compiler - Analysis
m Program <j

Transformation

=

Transformed
Source Code

ROSE Unparser

ROSE

Fig. 1. A source-to-source translator built using ROSE

3 OpenMP Support in ROSE

As Fig. 2 shows, ROSE supports parsing OpenMP 3.0 constructs for C/C++
and Fortran!, creating their internal representation as part of the AST, and
regenerating source code from the AST. Additional support includes a set of
translations targeting multiple OpenMP 2.5/3.0 RTLs based on XOMP, our
common OpenMP RTL that abstracts the details of any specific RTL (such
as GCC’s OpenMP RTL GOMP [9] and the Omni [3] compiler’s RTL). An
automatic parallelization module is also available in ROSE [10].

—

C/C++/Fortran* Parsing FBT 5 Translation
OpenMP iz 3.0 spec. Generation
N

" Automatic J,
Sequential ereilfeets
C/C+Code |~ arafielization Multithreaded I

Code
‘ OMNI €

Fig. 2. OpenMP support in ROSE

\

Binary
Executable

3.1 Parsing and Representing OpenMP

Neither EDG (version 4.0 or earlier) nor OFP recognize OpenMP constructs.
The raw directive strings exist in the ROSE AST as pragma strings for C/C++
and source comments for Fortran. Thus, we had to develop two OpenMP 3.0
directive parsers within ROSE, one for C/C++ and the other for Fortran. This,
however, has significant advantages for users since they can easily change our
parsers to test new OpenMP extensions without dealing with EDG or OFP.
ROSE’s OpenMP parsers process OpenMP directive strings and generate
a set of data structures representing OpenMP constructs. These data struc-
tures are attached to relevant AST nodes as persistent AST attributes. Using
persistent AST attributes as the output of the parsers simplifies the work for
parsing since we only make minimal changes to the existing ROSE AST. In
fact, this light-weight representation for OpenMP is also used as the output

! Translation of Fortran OpenMP applications is still ongoing work.

of ROSE’s automatic parallelization module [10]. As a result, the remaining
OpenMP-related processing can work on the same input generated either from
user-defined OpenMP programs or automatically generated OpenMP codes.

After that, a conversion phase converts the ROSE AST with persistent at-
tributes for OpenMP into an AST with OpenMP-specific AST nodes, which in-
clude statement-style nodes for OpenMP directives and supporting nodes (with
file location information) for OpenMP clauses. Compared to the auxiliary per-
sistent attributes attached to AST nodes, the newly-introduced AST nodes for
OpenMP directives and clauses are inherently part of the ROSE AST. Thus, we
can directly resuse most existing AST traversal, query, scope comparison, and
other manipulation interfaces developed within ROSE to manipulate OpenMP
nodes. For instance, a regular AST traversal is able to access all variables used
within the AST node for an OpenMP clause with a variable list. This signifi-
cantly simplifies the analysis and translation of OpenMP programs.

3.2 OpenMP Translation and Runtime Support

An OpenMP implementation must translate OpenMP applications into multi-
threaded code with calls to a supporting runtime library. To offer maximal free-
dom and optimization opportunities to OpenMP implementations, the OpenMP
specification does not mandate the interface between a compiler and a runtime
library. The implementation must decide what work to defer to the runtime li-
brary and how the compiler translation interacts with the library. Therefore,
an OpenMP compiler’s translation is traditionally tightly coupled with a given
runtime library’s interface. It is often a major effort to change the existing com-
piler translation to utilize a new runtime library. However, different runtime
library choices and changes in the interactions between the compiler can signif-
icantly impact OpenMP performance. Thus, it would be especially desirable for
an OpenMP research compiler to support multiple OpenMP runtime libraries.

Fortunately, although OpenMP runtime library interfaces vary, they usu-
ally include many similar or overlapped runtime library functions. For example,
most portable OpenMP runtime libraries rely on the Pthreads API to create
and to manipulate threads. Such a library usually provides a function that ac-
cepts a function pointer and a parameter to start multiple threads. Similalry,
the OpenMP specification prescriptively defines some aspects of loop scheduling
policies so runtime support for them often significantly overlaps.

We have introduced a common OpenMP RTL, XOMP, so that ROSE re-
quires minimal changes to support multiple OpenMP RTLs. Depending on the
similarity among RTLs, we use three rules in order to define XOMP and the
corresponding compiler transformations.

— Rule 1. Target RTLs have some functions with similar functionalities. Those
functions often differ by names and/or parameter lists. For each of the func-
tions, we define a common function name and a union set of parameters in
XOMP. The implementation of the common function will handle possible
type conversion, parameter dispatch, inclusions/exclusions of functionality

(to compensate for minor differences) before calling different the target RTL
internally. By doing this, we can use one translation targeting XOMP’s func-
tions across multiple RTLs.

— Rule 2. Compared to other RTLs, a target RTL, 1ibA, has an extra function,
funcA().

1. 1ibA needs to call funca() explicitly while other libraries do not have a sim-
ilar need or meet the need transparently. We define an interface function
in XOMP for funcA(). The implementation of the XOMP function is con-
ditional based on the target RTL, either calling funcA() for 1iba or doing
nothing for all others. Compiler translation targets the same XOMP
interface as if all RTLs had the explicit need.

2. funcA() implements some common functionality that is indeed suitable to
be put into an RTL. Other libraries lack the similar support and rely
on compiler translation too much. We define an XOMP function for the
common functionality. The XOMP function either calls funcA() for liba
or implements the functionality that is absent in other RTLs. Compiler
translation targets the XOMP function.

3. funcA() implements some functionality that is better suited to direct im-
plementation by compiler translation. We develop the compiler trans-
lation to generate statements to implement the functionality without
leveraging any runtime support. Still, the compiler translation can work
with all RTLs.

— Rule 3. Occasionally, none of the above options may apply nicely. For exam-
ple, the translation methods and the corresponding runtime support for an
OpenMP construct can be dramatically different. In this case, we expose all
the runtime functions in XOMP and have different translations for different
XOMP support depending on the choice of implementation.

Finally, OpenMP translations share many similar tasks regardless of their
target RTLs. These tasks include generating an outlined function to be passed
to each thread, variable handling for shared and private data, and replacing
directives with a function call. We have developed a set of AST transformations
to support these common tasks. For example, the ROSE outliner [7] is a general-
purpose tool to extract code portions from both C and C++ to create functions.
It automatically handles variable passing according to variable scope and use
information.

3.3 Translation Algorithm

We use the following translation algorithm for each input source file that uses
OpenMP:

1. Use a top-down AST traversal to make implicit data-sharing attributes ex-
plicit, including implicit private loop index variables for loop constructs and
implicit firstprivate variables for task constructs.

2. Use a bottom-up AST traversal to locate OpenMP nodes and to perform
necessary translations.

(a) Handle variables if they are listed within any of private, firstprivate,
lastprivate and reduction clauses of a node.

(b) For (omp parallel) and (omp task) constructs, generate outlined functions
as tasks and replace the original code block with XOMP runtime calls.

(¢) For loop constructs, normalize target loops and generate code to calcu-
late iteration chunks for each thread, with the help from XOMP loop
scheduling functions.

(d) Translation for other constructs, such as barrier, single, and critical, are
relatively straightforward [11].

Our algorithm handles variables with OpenMP data-sharing attributes in a
separate phase before other translation activities. Thus, we eliminate OpenMP
semantics from a code segment as much as possible so the general-purpose ROSE
outliner can easily handle the code segment. Combined OpenMP variable han-
dling and outlining would otherwise force us to tweak the outliner to handle
OpenMP data-sharing variables specially during outlining.

3.4 Examples

We take the GCC 4.4.1’s GOMP [9] and Omni Compiler [3] (v1.6) RTLs as
two examples to demonstrate the definition of XOMP and the corresponding
reusable compiler translations. GOMP is a widely available OpenMP runtime
library and has recently added support for the task features of OpenMP 3.0.
The Omni compiler is a classic reference research compiler for OpenMP 2.0/2.5
features. Supporting these two representative RTLs within a single compiler is
a good indication of extensibility of a research compiler.

Fig. 3 and Fig. 4 give an example OpenMP program that uses tasks and
ROSE’s OpenMP translation that targets XOMP. ROSE uses a bottom-up
traversal to find OpenMP parallel and task nodes and generates three outlined
functions with the help from the outliner. These outlined functions are passed
to either XOMP _parallel_start() Or XOMP_task() to start multithreaded execution.

Some XOMP quCtiOHS, such as XOMP _parallel_start(), XOMP _barrier() and XOMP_single(),
are defined based on Rule 1 as common interfaces on top of both GOMP and
Omni’s interfaces. Rule 2.1 applies to XOMP_init() and XOMP_terminate(), which
are introduced by Omni to initialize and to terminate runtime support explicitly
while GOMP does not need them. In another case, GOMP does not provide run-
time support for some simple static scheduling while Omni does. We decided to
use Rule 2.3, letting the translation generate statements calculating loop chunks
for each thread and totally ignore any runtime support. Rule 3 applies to the
implementation for threadprivate. GCC uses Thread-Local Storage (TLS) to im-
plement threadprivate variables. The corresponding translation is simple: mostly
by adding the keyword __thread in front of the original declaration for a variable
declared as threadprivate. On the other hand, Omni uses heap storage to man-
age threadprivate variables and relies on more complex translation and runtime
support to initialize and to access the right heap location as a private storage
for each thread. These two implementations represent two common methods to

1 int main ()

2

3 #pragma omp parallel

4 Y

5 #pragma omp single

6

7 int i;

8 #pragma omp task untied

9

10 for (i = 0; i < 5000; i++)
11

12 #pragma omp task if (1)

13 process (item[i]);
14

15 }

16 }

17 }

18 return 0;

19 }

Fig. 3. An example using tasks

support threadprivate that each has well-known advantages and disadvantages.
As a result, we decided to support both methods and to use different translation
and/or runtime support conditionally depending on the choice of the final target
RTL. xOMP_task is an exceptional case since Omni does not have corresponding
support and we defined it based on GOMP’s interface. In summary, less than
20% of the XOMP functions are defined using Rule 3. This means that more
than 80% of the OpenMP translation can be reused across multiple RTLs.

Leveraging ROSE’s robust C++ support, we are also able to implement
OpenMP translation for C++ applications. Fig. 6 shows the translation result
of an example C++ program shown in Fig. 5. The ROSE outliner supports
generating an outlined function with C-bindings at global scope from a code
segment within a C++4 member function. This binding choice is helpful since
the thread handling functions of most OpenMP RTLs expect a pointer to a C
function, not a C++ one. The outlined function at line 22 is also declared as a
friend (at line 11) in the host class to access all class members legally.

4 Evaluation

We evaluate ROSE’s support for both OpenMP analysis and translation.

4.1 OpenMP Analysis

We have used ROSE to build a simple analysis tool that can detect a common
mistake of using OpenMP locks. As Fig. 7 shows, a lock variable (at line 3) is
declared within a parallel region and then used within that same parallel region,
which is incorrect since a lock must be shared to be effective. A locally declared
lock is private to each thread.

Fig. 8 shows the ROSE AST analysis code (slightly simplified) that can find
this error in using locks. Programmers only need to create a class(OmpPrivateLock)

© 000Uk WN -

#include ”libxomp .h”
struct OUT__1_.1527___data {int i;
struct OUT__2_.1527___data {int i;

static void OUT__1_.1527__(void x__out_argv)

{
int i = (int)(((struct OUT__1_.1527___data =x)__out_argv) —> 1i);
int _p_i = i;
process ((item [_-p_-i]));

static void OUT__.2_.1527__(void *__out_argv)
{
int i = (int)(((struct OUT__2_.1527___data =x)__out_argv) —> i);
int _p_i = i;
for (_p-i = 0; _p_i < 5000; _p_i++) {
struct OUT__1_.1527___data __out_argv1__1527__;
__out_argvl__1527__.i = _p_i;
/% wvoid XOMP_task (
* void (xfn) (void *), wvoid *xdata, void (xcpyfn) (void =, wvoid %),
* long arg-size, long arg_align, bool if-clause, bool untied)x/
XOMP_task(OUT__1_..1527__,& __out_argv1__1527__,0,4,4,1,0);
}
}

static void OUT__3_..1527__(void *__out_argv)

if (XOMP._single()) {
int i;
struct OUT__2_.1527___data __out_argv2__1527__;
——out_argv2__.1527__.1i = i;
XOMP_task(OUT__2_..1527__,& __out_argv2_.1527__,0,4,4,1,1);

¥
XOMP_barrier ();

}
int main(int argc,int argv)
{

int status = 0;

XOMP._init (argec ,argv);

/* wvoid XOMP_parallel_start (

* void (xfunc) (void %), wvoid xdata, unsigned num_threads)x/
XOMP_parallel_start (OUT__3..1527__,0,0);

XOMP_parallel_end ();

XOMP_terminate(status);

return 0;

Fig. 4. Translated example using tasks

by inheriting a builtin AST traverse class in ROSE and to provide a visitor

function implementation. The traversal visits all AST nodes to find a use of an

OpenMP lock within any of OpenMP lock routines (line 4-13). The code then de-

tects if the use of the lock is lexically enclosed inside a parallel region (line 16-18)

and if the declaration of the lock is also inside the same parallel region (line 21-

22). The statement style OpenMP node(SgOmpParallelStatement) for a parallel re-

gion enables users to directly reuse AST interface functions, such as the function

tofind a lexically enclosing node of a given type (Sagelnterface o getEnclosingNode<ParentType>(node))

and another function to tell if a node is another node’s ancestor (Sagelnterface :: isAncestor(a-node, c-node)).
This example demonstrates that writing analysis tools using ROSE is straight-

© o0 Uk WN -

1 class A

2

3 private:

4 int i;

5 public:

6 void pararun ()
7 {

8 #pragma omp parallel
9

10 #pragma omp critical
11 cout<<”i=_"<< i <<endl;
12 }

13 }

14}

Fig.5. A C++ example

#include ”libxomp.h”

struct OUT__1_.1527___data { wvoid *this__ptr___p; };
static void OUT__1..1527__(void *__out_argv);

static void *xomp_critical_user_;

class A

private:
int i;

public:
friend void :: OUT__1_.1527__(void *__out_argv);
void pararun ()

{
class A xthis__ptr__. = this;
struct OUT__1_.1527___data __out_argvl1__1527__;
__out_argvl__1527__.this__ptr___p = (void =)this__ptr__;
XOMP_parallel_start (OUT__1_.1527__,& __out_argv1__1527__,0);
XOMP_parallel_end ();

}

¥
static void OUT__1..1527__(void *__out_argv)

class A xthis__ptr__ =

(class A *)(((struct OUT__1__1527___data =*)__out-argv) —> this__ptr___p);

XOMP_critical_start(&xomp_critical_user_);
std ::cout<<” i=."<<(*xthis__ptr__).i<<std ::endl;
XOMP_critical_end (&xomp_critical_user_);

}

Fig. 6. Translated C++ example

#pragma omp parallel

omp-_lock_t Ick;
omp_set_lock(&lck);

omp-_unset_lock(&lck);

N O U W N

Fig. 7. Using a private lock

forward since OpenMP constructs are represented as nodes that are inherently

part of the ROSE AST.

printf(” Thread .=_%d\n” , omp_get_thread-num ());

© 00O Uk WN =

void OmpPrivateLock:: visit (SgNode* node)

//1. Find an OpenMP lock routine

SgFunctionCallExp * func_call = isSgFunctionCallExp (node);

if (!func_-call) return;

std ::string f_name = func_call —>get_name ();

if (foname != "omp.unset_lock” && f_name != "omp_set_lock”
&& f_name != "omp_test_lock”) return;

//2. Grab the only routine parameter as the use of a lock
std:: vector<SgVarRefExp*> exp_vec =

Sagelnterface :: querySubTree<SgVarRefExp>(func_call , V_SgVarRefExp);
ROSE_ASSERT (exp-vec.size () ==1);

//8. If the lock’s use is inside a parallel region
SgOmpParallelStatement* lock_region =

Sagelnterface :: getEnclosingNode<SgOmpParallelStatement >(exp_-vec [0]);
if (lock_region)

//4. Check if the lock declaration is also inside the same region
SgVariableDeclaration* lock_decl = exp_vec[0]—>get_declaration ();
if (Sagelnterface::isAncestor(lock_region, lock_decl))

cerr<<”Found_a_private_lock_within_a_parallel _region”<<endl;

Fig. 8. A ROSE-based tool to find private locks

4.2 OpenMP Translation

We have evaluated ROSE’s OpenMP translations and the corresponding XOMP
interface through a set of OpenMP benchmarks, including the NAS Parallel
Benchmarks(NPB)[12] and the Barcelona OpenMP Task Suite (BOTS) [13],
Those benchmarks have builtin correctness verification so they also test the
correctness of our compiler implementations. We ran all experiments on a Dell
T5400 workstation with dual processors and 8 GB of memory. Each of the pro-
cessors is a 3.16 GHz quad-core Intel Xeon X5460 processor. We used several
other OpenMP compilers in addition to ROSE, including GCC 4.4.1, Intel Com-
pilers 11.1.059, and the Mercurium 1.3.3 compiler with the Nanos 4.1.4 runtime.
We used GCC 4.4.1 as the backend compiler for all source-to-source implemen-
tations. We used compiler option -08 whenever possible.

Fig. 9 shows the speedup of a subset of NPB (V 2.3 C version [14]) and
BOTS V 1.0 using up to 8 threads by different compiler/runtime configura-
tions. Results for the remaining benchmarks had similar patterns and are not
shown for brevity. ROSE-Omni’s speedup for the BOTS benchmarks (NQUEEN,
SORT, and STRASSEN) is not available since the Omni runtime library does
not support OpenMP tasking. In general, all implementations had comparable
performance. ROSE’s source-to-source translation and extra layer of runtime
support do not incur any significant performance overhead compared to other
compilers.

M ntel

® Mercurium

1/2/4/6|8|1|2|4|6 8/1|2|4|6/8/1|2|4|6|8|1|2/4|6|8|12|4|6|38

CG FT MG NQUEEN SORT STRASSEN

Fig. 9. Speedup of some NPB 2.3 and BOTS 1.0 benchmarks

5 Related Work

Some other OpenMP research compilers exist. Representative examples include
Omni [3], OdinMP [15] and OpenUH [11]. Most research compilers adopt the
source-to-source translation approach. Based on Open64, OpenUH supports
both source-to-source translation and generating the final binary code by itself.
The Nanos Mercurium compiler [16] is another source-to-source compiler aimed
at fast prototyping for OpenMP. It was among the first to support OpenMP
3.0’s task feature and was used to evaluate the expressiveness and flexibility
of OpenMP task directives compared to using nested parallelism and Intel’s
taskqueues. More recently, Addison et. al. [17] presented the OpenMP 3.0 imple-
mentation in OpenUH [11] with an extended runtime system supporting task-
ing. However, the corresponding compiler translation was done manually, as
reported in their paper. Leveraging GCC 4.4’s runtime library, ROSE is one
of the few OpenMP compilers supporting OpenMP 3.0. It might be the only
OpenMP research compiler with stable C++ source-to-source support, although
both OpenUH and Mercurium have a similar goal. Finally, ROSE’s XOMP easy
translation interface enables ROSE to implement translations targeting different
RTLs quickly as demonstrated in this paper. Other compilers usually target only
a single RTL.

6 Conclusion

In this paper, we have presented ROSE as an OpenMP research compiler for
C/C++ and Fortran. ROSE’s OpenMP support includes extensions to ROSE’s

AST to represent OpenMP constructs, a common runtime support interface
(XOMP), and a set of reusable translations that can target multiple OpenMP
runtime libraries. An automatic parallelization module is also available in ROSE.
Our AST representation for OpenMP is inherently part of the ROSE AST so
most existing AST manipulation, analysis, and transformation interface func-
tions can be easily reused to handle OpenMP applications. Preliminary eval-
uation demonstrates that it is straightforward to write static analysis tools for
OpenMP. Also, ROSE’s OpenMP translation targeting two mainstream OpenMP
RTLs has competitive performance compared to other OpenMP implementa-
tions. The latest ROSE OpenMP support has been released as part of the ROSE
distribution (downloadable from our website [2]).

In the future, we plan to add the OpenMP Fortran support and to complete
the OpenMP 3.0 implementation, such as loop collapse. We will build more static
analysis tools to help users write correct OpenMP applications. With ROSE’s
unique C++ support, we are interested in exploring more C++-related issues
within OpenMP. The introduction of explicit tasks in OpenMP 3.0 gives imple-
mentations and users more choices to optimize parameters related to tasks, such
as the cut-off depth of tasks, tied or untied tasks, or task scheduling policies
(including task aggregation granularity). We expect that empirical tuning can
play an important role in finding the best OpenMP compilation and execution
parameters for a given application on a particular platform. Finally, we espe-
cially welcome external collaborations using ROSE for research specific to the
requirements of the OpenMP research community.

References

1. OpenMP Architecture Review Board: OpenMP application program interface (ver-
sion 3.0). http://www.openmp.org/mp-documents/spec30.pdf (May 2008)

2. Quinlan, D.J., et al.: ROSE compiler project. http://www.rosecompiler.org/

3. Sato, M., Satoh, S., Kusano, K., Tanaka, Y.: Design of OpenMP compiler for an
SMP cluster. In: the 1st European Workshop on OpenMP(EWOMP’99). (Septem-
ber 1999) 32-39

4. Quinlan, D.: ROSE: Compiler support for object-oriented frameworks. In: In
Proceedings of Conference on Parallel Compilers (CPC). (2000)

5. Edison Design Group: C++ Front End. http://wuw.edg.com

6. Rasmussen, C., et al.: Open Fortran Parser. http://fortran-parser.
sourceforge.net/

7. Liao, C., Quinlan, D.J., Vuduc, R., Panas, T.: Effective source-to-source outlin-
ing to support whole program empirical optimization. In: The 22th International
Workshop on Languages and Compilers for Parallel Computing (LCPC), Newark,
Delaware, USA (2009)

8. Yi, Q., Quinlan, D.: Applying loop optimizations to object-oriented abstractions
through general classification of array semantics. In: The 17th International Work-
shop on Languages and Compilers for Parallel Computing (LCPC). (2004)

9. : GOMP - an OpenMP implementation for GCC. http://gcc.gnu.org/projects/
gomp (2005)

10.

11.

12.

13. :

14. :

15.

16.

17.

Liao, C., Quinlan, D.J., Willcock, J.J., Panas, T.: Extending automatic paralleliza-
tion to optimize high-level abstractions for multicore. In: IWOMP ’09: Proceedings
of the 5th International Workshop on OpenMP, Berlin, Heidelberg, Springer-Verlag
(2009) 28-41

Liao, C., Hernandez, O., Chapman, B., Chen, W., Zheng, W.: OpenUH: an opti-
mizing, portable OpenMP compiler. Concurrency and Computation: Practice and
Experience 19(18) (2007) 2317-2332

Jin, H., Frumkin, M., Yan, J.: The OpenMP implementation of NAS parallel
benchmarks and its performance. Technical Report NAS-99-011, NASA Ames
Research Center (1999)

Barcelona OpenMP task suite. http://nanos.ac.upc.edu/content/
barcelona-openmp-task-suite

C version NPB 2.3 in OpenMP. http://www.hpcs.cs.tsukuba.ac.jp/
omni-openmp/download/download-benchmarks.html

Brunschen, C., Brorsson, M.: OdinMP/CCp - a portable implementation of
OpenMP for C. Concurrency - Practice and Experience 12(12) (2000) 1193-1203
Ayguadé, E., Duran, A., Hoeflinger, J., Massaioli, F., Teruel, X.: An experimental
evaluation of the new OpenMP tasking model. (2008) 63-77

Addison, C., LaGrone, J., Huang, L., Chapman, B.: OpenMP 3.0 tasking imple-
mentation in OpenUH. In: Open64 Workshop at CGO 2009. (2009)

