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ABSTRACT
Domain specific languages (DSLs) offer an attractive path to
program large-scale, heterogeneous parallel computers since
application developers can leverage high-level annotations
defined by DSLs to efficiently express algorithms without
being distracted by low-level hardware details. However,
performance of DSL programs heavily relies on how well a
DSL implementation, including compilers and runtime sys-
tems, can exploit knowledge across multiple layers of soft-
ware/hardware environments for optimizations. The knowl-
edge ranges from domain assumptions, high-level DSL se-
mantics, to low-level hardware features. Traditionally, such
knowledge is either implicitly assumed or represented us-
ing ad-hoc approaches, including narrative text, source-level
annotations, or customized software and hardware specifica-
tions in high performance computing (HPC). The lack of a
formal, uniform, extensible, reusable and scalable knowledge
management approach is becoming a major obstacle to effi-
cient DSLs implementations targeting fast-changing parallel
architectures.

In this paper, we present a novel DSL implementation
paradigm using an ontology-based knowledge base to for-
mally and uniformly exploit the knowledge needed for opti-
mizations. An ontology is a formal and explicit knowledge
representation to describe concepts, properties, and individ-
uals in a domain. During the past decades, a wide range of
ontology standards and tools have been developed to help
users capture, share, utilize and reason domain knowledge.
Using modern ontology techniques, we design a knowledge
base capturing concepts and properties of a problem domain,
DSL programs, and hardware architectures. Compiler inter-
faces are also defined to allow interactions with the knowl-
edge base to assist program analysis, optimization and code
generation. Our preliminary evaluation using stencil compu-
tation shows the feasibility and benefits of our approach.
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1. INTRODUCTION
Domain-specific languages (DSLs) [30] offer an attractive

path to program large-scale, heterogeneous parallel com-
puters since application developers can leverage a set of
high-level notations and abstractions defined by DSLs to
efficiently express high-level algorithms, without being dis-
tracted by low-level, fast-changing hardware details. The
performance of DSL programs heavily relies on how well a
DSL implementation can leverage a wide range of knowledge
from multiple layers of the DSL software/hardware stack to
enable optimizations. Example knowledge includes domain
assumptions, high-level DSL semantics, low-level hardware
features, and so on. High-level DSL semantics are often lost
during DSL lowering (a compiler process of converting a
DSL program to lower level representations) and extremely
difficult or even impossible for a compiler to recover. For
example, a DSL may define a high-level array abstraction
which has the non-aliasing and non-overlapping semantics.
Its implementation may choose to lower the array abstrac-
tion to a low-level C pointer type. It is very difficult for
classic compiler analysis to figure out a pointer’s aliasing and
overlapping properties, which prevents a wide range of opti-
mizations. Many other semantics are even more intractable
for compilers to discover. For instance, a DSL data con-
tainer storing objects may have the semantics of unique and
sorted. No compiler analysis can detect such properties if
the stored objects are not known at compile time.

Currently, a range of informal, ad-hoc methods are used to
communicate semantics of an application domain and details
of a machine architecture with compilers and runtime sys-
tems, including customized semantics specification files [14],
memory specification language [6], and so on. These meth-
ods are not uniform, reusable and scalable. Formally, some
studies used ontology [26], a formal domain knowledge spec-
ification based on description logic [3], to conduct domain
analysis and language grammar design [27, 5]. However,
these studies did not target high performance computing.



They also did not leverage ontology in DSL compiler imple-
mentations. As a result, there is still an urgent need for using
a formal and holistic knowledge management approach for
enhancing DSL implementations in high performance com-
puting (HPC).

In this paper, we present a novel ontology-based approach
to enhance DSL implementations tailored for HPC. We use
modern ontology-based knowledge engineering techniques
to formally and systematically capture, store, and utilize
multiple layers of knowledge which is essential for effective
DSL implementations. Both domain-specific semantics and
HPC hardware features are explicitly represented by using
the standard Web Ontology Language (OWL)[18], one of
the most popular ontology languages. We also define a
compilation framework interacting with an ontology-based
knowledge base. Preliminary results using stencil computa-
tion show that our new ontology-driven DSL implementation
paradigm can dramatically improve reusable domain knowl-
edge accumulation and effectively guide code generation and
optimizations.

2. METHODOLOGY
In this section, we give an overview of our ontology-driven

DSL implementation paradigm. We then give detailed de-
scriptions of key techniques, challenges and solutions of our
approach.

2.1 Overview
As shown in Figure 1, our approach focuses on how to

formally and systematically represent and utilize a range of
domain knowledge which is relevant to enhance HPC DSL
implementations. Our fundamental motivation is to apply
modern ontology-based knowledge engineering techniques in
the field of high performance computing in order to enable
more optimizations.

The central component of our approach is an ontology-
based knowledge base storing information representing com-
mon sense concepts (referred to as upper ontology), appli-
cation domains (e.g. stencil computation), programs (e.g.
DSL programs), libraries, hardware architectures, and so
on. Through end-user tools and programmable APIs, the
knowledge base can interact with human users (e.g. domain
experts, DSL developers, programmers, architects) and soft-
ware agents (e.g. compilers and runtime systems) to acquire
knowledge and answer queries. Storing information across
different domains of a DSL enables opportunities of bridging
semantics gaps, i.e. communicating high-level domain se-
mantics with low-level implementations so the compiler and
runtime can better analyze and optimize DSL programs for
a target hardware platform.

2.2 Ontology-Based Knowledge Base
It is a challenging task to manage the diverse knowledge

needed for supporting DSL implementations targeting fast
changing high performance computing architectures. The
techniques used must be intuitive, flexible, scalable, user-
friendly, efficient and mature. We choose an ontology-based
knowledge base to store and utilize knowledge required for
HPC DSLs.

Ontology-based knowledge bases have been gaining in-
creasing popularity in multiple fields, including biology [2],
ambient intelligence [24], and robotics [28], partially driven
by the maturing ecosystem of semantic web movement led
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Figure 1: A new Ontology-Driven DSL Implementation
Paradigm

by the World Wide Web Consortium. An ontology [26] is
a formal specification for explicitly representing knowledge
about types, properties, and interrelationships of the enti-
ties in a domain. It provides a common vocabulary to repre-
sent and share domain concepts. The theory foundation of
modern ontology techniques is Description Logics (DLs) [3],
a family of logical languages for knowledge representation.
DLs have several dialects with different expressiveness and
different efficiencies for reasoning. Web Ontology Language
(or OWL) [18, 19] is one of the most popular ontology lan-
guages.

As shown in Figure 2, OWL contains classes, properties,
and individuals. Classes (or concepts) denote sets of indi-
viduals. Classes may be organized into a hierarchy via inher-
itance relations. Classes are denoted as nodes in an ontol-
ogy’s visulization graph. Person, Man, and Women are three
classes in the example ontology modeling families. Two
special classes are provided by default, owl:Thing and owl:

Nothing. owl:Thing is the most general class and the super-
class of any other class in the ontology. Class owl:Nothing is
empty and is the subclass of every included class.

Properties (or relations, roles) specify binary relations be-
tween objects. Properties are shown as edges in ontology
graphs. OWL defines two main kinds of properties: ob-
ject properties and datatype properties. Object properties
connect objects to other objects. For example, the hasWife

property connects John and Mary. Datatype properties re-
late an object to datatype values. One example datatype
property is hasAge, which connects a person to an integer
value indicating the person’s age. A property may have
some restrictions (constraints), which describe existential or
universal restrictions, a value type, allowed range of val-
ues, the number of the values (cardinality), and so on. It
may also have characteristics such as transitive, symmetric,
reflexive, etc. Similiar to classes, a property may have sub-
properties to form a property hierarchy (hasSpouse has sub
properties: hasWife and hasHusband). An OWL query on a
generic property will return all subproperties asserted.

Individuals (or instances) denote single individuals in the
domain. In the example, John is an individual of the class
Man.

OWL has different kinds of syntax for different purposes.
We use a concise form, functional syntax, in this paper. As
shown in Table 1, OWL, as a description logic language, is
equipped with a formal (i.e. machine readable) semantics: a
precise specification of the meaning of OWL ontologies. The



Person

Man Women

John Mary

instanceOf

subClassOf subClassOf

instanceOfhasWife

hasHusband

Figure 2: Example Ontology for the family domain

1 Pre f i x (:=<http : // e x amp l e . com/ ow l / f a m i l i e s />)
2 Ontology(<http : // e x amp l e . com/ ow l / f a m i l i e s >
3 Dec larat ion ( NamedIndividual ( : John ) )
4 Dec larat ion ( NamedIndividual ( :Mary ) )
5 Dec larat ion ( Class ( : Person ) )
6 Dec larat ion ( Class ( :Woman ) )
7 Dec larat ion ( ObjectProperty ( : hasWife ) )
8 Dec larat ion ( ObjectProperty ( : hasSpouse ) )
9 SubClassOf ( :Woman : Person )

10 SubClassOf ( :Man : Person )
11 SubObjectPropertyOf ( : hasWife : hasSpouse )
12 ObjectPropertyAssert ion ( : hasWife : John :Mary )
13 . . . )

Figure 3: Family ontology in functional syntax

semantics of OWL are defined by interpreting concepts as
sets of individuals and properties as sets of ordered pair of in-
dividuals. These individuals are typicallyed assumed from a
given domain. Non-atomic concepts and properties have se-
mantics which are defined based on semantics of atomic ones.
Figure 3 shows a concrete example of using OWL 2’s func-
tional syntax to describe a family ontology. OWL requires
that each entity in the ontology must have a unique string-
based id, or internationalized resource identifier (IRI), in
order to unambiguously refer to concepts, relations, and in-
dividuals. IRIs are defined in different namespaces to avoid
name collision. A namespace can have a short alias called
prefix.

Our choice of using OWL for representing DSL knowledge
has several prominent benefits, including 1) leveraging exist-
ing knowledge engineering methodologies [8] and tools [11]
to allow people of different backgrounds to collaboratively
make domain knowledge explicit, 2) providing a common
taxonomy and vocabulary to enable knowledge interoper-
ability among multiple sources including human users and
software agents, 3) providing knowledge reuse since the on-
tology provides a persistent knowledge base with standard
formats with query and update interfaces [33, 12], 4) facili-
tating knowledge validation and generation using logic pro-
gramming connected with reasoning/inference engines such
as FaCT++ [29] and SWI-Prolog [34].

A knowledge base to support HPC DSL implementations
must be comprehensive enough to cover sufficient informa-
tion while efficient enough to handle updates and queries.
We use a modular design to organize knowledge into differ-
ent modules based on their layers in the DSL software/hard-
ware stack. This design allows on-demand loading of rele-
vant knowledge modules to effeciently serve a purpose. Stale
information about hardware can also easily be discarded.

Generating high quality knowledge is another challenge
considering the large scope to be covered in our paradigm.
We use a hybrid approach combining both manual and au-
tomated processes to generate the contents of the knowledge
base. The manual process invovles a team of people from dif-
ferent disciplines, including domain experts, DSL designers,
programmers, and architects. Fundamental concepts and re-
lations for different domains are established by the team. In-
stances are mostly automatically generated by tools (e.g. a
compiler-based tool converting an input program into OWL
instances). In addition, some existing ontologies [17, 28] al-
ready model some portion of the knowledge we are interested
in. We simply directly import them into our knowledge base
or cherry-pick relevant entities.

2.3 Compiler and Runtime Interface
The interface of an ontology-based knowledge base is es-

sential for allowing interactions with DSL compilers, runtime
systems, and tools, in order to bridge the semantics gap in
DSL implementations. We discuss requirements, challenges,
and solutions to enable productive, flexible and portable in-
teractions.

The main requirement for the knowledge base’s interface
is that it must support bidirectional interaction, i.e. soft-
ware agents not only passively query the knowledge base for
information, but also actively update the knowledge base
with new knowledge. The reason is that significant pieces of
HPC knowledge are indeed not prior knowledge, but highly
dependent on a particular execution instance of a program
running on a given environment. Therefore, it is impossible
to prepare a static, prebuilt, all-you-need knowledge base
for HPC. In addition, the interface should also be fast and
easy to deploy in HPC environments.

To meet the main requirement, we use SWI-Prolog[34] as
the main interface between the knowledge base and DSL im-
plementations. SWI-Prolog provides a semantic web library
which can load OWL ontologies into memory and represent
them as logic terms (predicates). Standard Prolog queries
can be written to query and update the knowledge base.
Moreover, SWI-Prolog has excellent language interoperabil-
ity. It can work as a host language loading foreign C/C++
libraries. It can also be embedded in existing C and C++
programs to serve as a logical engine. These features allow
the knowledge base to be dynamically connected to com-
pilers and runtime systems written in general-purpose lan-
guages such as C and C++.

While Prolog provides powerful querying and reasoning
capabilities to interact with an ontology knowledge base,
some HPC environments may not able to provide Prolog for
various reasons. Even if Prolog is provided, some simple
and frequent queries do not need logic programming with
unnecessary overhead caused by language interoperability.
To alleviate these problems, we developed a light weight on-
tology parser and query library written in C++ to allow
software agents to parse and query OWL files using familiar
and convenient C++ function calls. Example C++ function
calls include those loading OWL files, retrieving the num-
ber of CPUs for a machine, obtaining memory features of a
GPUs and so on.

Additional support in the compilers and runtime systems
is needed to help bridge the semantics gap in DSL implemen-
tations. Proper connections must be established between do-
main concepts, DSLs, and low-level host languages so knowl-



Functional Syntax Formal Semantics Natual Language Semantics

Declaration(Class(CE)) (CE)C ⊆ ∆I CE is a class within an object domain

Declaration(NamedIndividual(a)) (a)I ∈ ∆I a is an individual within an object domain

Declaration(ObjectProperty(OPE)) (OPE)OP ⊆ ∆I ×∆I OPE is an object property connecting two objects

subClassOf(CE1 CE2) (CE1)C ⊆ (CE2)C class CE1 is a subclass of class CE2

ClassAssertion(CE a) (a)I ∈ (CE)C individual a is an instance of class CE

ObjectPropertyAssertion(OPE a1 a2) ((a1)I , (a2)I) ∈ (OPE)OP a1 is related to a2 via ObjectProperty OPE

ObjectIntersectionOf(CE1 ... CEn) (CE1)C ∩ ... ∩ (CEn)C a class resulting from intersecting class CE1 to CEn

Table 1: OWL version 2.0: example functional syntax and semantics

edge from higher level entities can be associated with their
corresponding low-level entities, and vice versa when needed.
Some connections at higher levels (e.g. application domain
and DSL programs) can be manually established by domain
experts and DSL designers. For example, a stencil domain
may have a concept of stencil. A concrete stencil DSL may
have a construct named MyStencil. Then the subclassOf re-
lation can be manually added by a DSL designer into the
knowledge base. A later query of the DSL construct can
automatically obtain the semantics defined at the domain
level. Many connections also exist inside an implementa-
tion when it translates (or lowers) high-level constructs into
lower level ones. One example is some high-level DSL array
abstractions are translated into low-level primitive pointer
types available in the host languages. Our solution is to
extend a compiler to explicitly keep track of essential trans-
formation steps and update the knowledge base with the
correlation of associated program constructs.

3. EVALUATION
In this section, we use a stencil DSL as an example to

evaluate our ontology-based knowledge base used to enhance
DSL implementations.

Stencil computation is widely used in many scientific ap-
plications for partial differential equations, finite element
and finite difference methods. The computation often fol-
lows a regular pattern using nested loops to update points
in a discretized space. A common stencil pattern references
surrounding points in a 2D or 3D grid to update a center
point.

3.1 Stencil DSL: Shift Calculus
AMR Shift Calculus [9] is a light-weight embedded DSL

that provides a generalized abstraction to express stencil
computation. This DSL relies on C++ as its host language
and additionally leverages the Chombo library [7], a library
suite for partial differential equations, to describe the spa-
cial discretization. We use an example (shown in Fig. 4)
for a two-dimensional 5-point stencil (a center point with
four neighbors) to describe the DSL’s syntax and seman-
tics. The description about the AMR Shift Calculus is split
into two parts: one presents the description for the spacial
discretization and the other introduces the formation of the
stencil.

The discretization of space is given as (i0, ..., iD) = i ∈ ZD.
The Shift Calculus DSL uses a C++ class Point to represent
the points in the rectangular lattice ZD. The Shift Calculus
DSL uses the C++ class Box from the Chombo library to
represent a rectangular region in ZD. A Box is defined by
specifying the Points defining its low and high corners. An

1 #define DIM 2

2 int main(int argc , char* argv [])

3 {

4 Point lo, hi;

5 // Space discretization

6 Box bxdest(lo,hi);

7 Box bxsrc=bxdest.grow (1);

8 ...

9 // Source and destination data containers

10 RectMDArray <double ,1> Asrc(bxsrc);

11 RectMDArray <double ,1> Adest(bxdest);

12 ...

13 double ident , C0;

14 // Shift and Stencil declarations

15 array <Shift ,DIM > shft_vec = getShiftVec ();

16 Stencil <double > laplace = C0*( shft_vec^zero);

17 // Stencil formation using Shift

18 for (int dir=0;dir <DIM;dir++)

19 {

20 Point thishft = getUnitv(dir);

21 laplace = laplace + ident*( shft_vec^thishft);

22 laplace = laplace + ident*( shft_vec ^( thishft *(-1)));

23 }

24 // Apply stencil computation using data containers in space

25 Stencil <double >:: apply(laplace , Asrc , Adest , bxdest);

26 }

Figure 4: Laplacian example with Shift Calculus DSL

example is at line 6 in Fig. 4 where the lo and hi points
define the bxdest Box. A Box can grow in all directions by a
given size (shown in line 7). For example, B.grow(s) grows
the Box B in all directions by a size s (s can be negative
corresponding to shrinking). A C++ class RectMDArray
introduced by the DSL is a real type container. The memory
size for a RectMDArray is determined by a Box associated
with it. If the Adest in Fig. 4 contains data for a N2 two
dimensional Box, the Asrc will contain a larger memory size
for a (N + 2)2 Box after its growth.

The Shift Calculus DSL also describes the formation of a
stencil. Two C++ template classes, Shift and Stencil, are
provided to describe the stencil used in the computation.
The Shift class has a data member with type of class Point.
A default constructor sets a Shift object that has an ori-
gin point in the multidimensional coordinates (represented
as (0,0) in a 2D coordinate, or (0,0,0) in 3D.). In Fig. 4, an
array of Shift at line 15 stores the unit vectors in all direc-
tions in space. We refer to this array as ShiftV ector in this
paper. The unit vectors are (1,0) and (0,1) in 2-dimensional
coordinates. A special operator ∧ is designed as a arith-
metic operator for the Shift class. The coordinate values
of a Point in all directions will be multiplied to the Shift
objects stored in the ShiftV ector. Its defintion in C++ is
in the following code snippet:

1 inline Shift operator ^(array <Shift ,DIM >, a_shiftvec , Point a_exp)

2 {

3 Shift ret;

4 for(int dir=0; dir < DIM; dir++)

5 ret = ret * Shift(a_shiftvec[dir]. m_shift)*a_exp[dir]);

6 return ret;

7 }

A Stencil class contains essential information for a stencil
with arbitrary shape and size. The information includes



1 int main(int argc ,char *argv [])

2 {

3 ...

4 const class Point lo(zero);

5 const class Point hi = getOnes () * adjustedBlockSize;

6 const class Box bxdest(lo,hi);

7 const class Box bxsrc = bxdest . grow (1);

8 class RectMDArray < double , 1 , 1 , 1 > Asrc(bxsrc);

9 class RectMDArray < double , 1 , 1 , 1 > Adest(bxdest);

10 const double ident = 1.0;

11 const double C0 = -6.00000;

12 ...

13 double *sourceDataPointer = Asrc . getPointer ();

14 double *destinationDataPointer = Adest . getPointer ();

15 for (k = lb2; k < ub2; ++k) {

16 for (j = lb1; j < ub1; ++j) {

17 for (i = lb0; i < ub0; ++i) {

18 destinationDataPointer[arraySize_X * (arraySize_Y * k + j) + i] =

sourceDataPointer[arraySize_X * (arraySize_Y * (k + -1) + j)

+ i] + sourceDataPointer[arraySize_X * (arraySize_Y * (k + 1)

+ j) + i] + sourceDataPointer[arraySize_X * (arraySize_Y * k

+ (j + -1)) + i] + sourceDataPointer[arraySize_X * (

arraySize_Y * k + (j + 1)) + i] + sourceDataPointer[

arraySize_X * (arraySize_Y * k + j) + (i + -1)] +

sourceDataPointer[arraySize_X * (arraySize_Y * k + j) + (i +

1)] + sourceDataPointer[arraySize_X * (arraySize_Y * k + j) +

i] * -6.00000;

19 }

20 }

21 }

22 }

Figure 5: generated sequential C++ output for Laplacian
example

all the coefficients and neighboring points (represented by
the coordinates of a point using the class Point discussed
earlier), and other parameters for adaptive mesh refinement
(AMR). Arithmetic operators, such as +, ∗, +=, are ap-
plicable to form the stencil shape in a Stencil object. A
Stencil object, laplace, at line 16 in Fig. 4 is initialized to
contain the origin point with a coefficient CO associated
with it. Line 18 to line 23 shows a loop that adds the adja-
cent neighboring points in every direction to the origin point
into the laplace object. A fixed coefficient, ident, is applied
to all these neighboring points. The final step (shown at line
25) is to apply the defined stencil to the source and target
data containers to execute the computation.

We built a Shift Calculus DSL compiler based on the
ROSE source-to-source compiler framework [22]. The com-
piler takes the source code written in the DSL and gener-
ates the source codes in C++. A vendor compiler, such as
GCC or the Intel compiler, is then used to generate the fi-
nal executable for a platform. Fig. 5 shows the sequential
C++ output code generated from the example in Fig. 4.
The generated code is not friendly to further optimizations.
The reason is that the semantics of member function Rect-
MDArray<>::getPointer() are not known to a compiler so
the returned pointer (subsequently the assigned sourceDat-
aPointer and destinationDataPointer) will be assumed to
be able to point to any memory location. For example, de-
pendency analysis will conservatively report that the two
pointers may alias to each other and parallelization of the
loop nests will not be activated.

3.2 Ontology for Stencil Computation
To represent and utilize semantics in DSL implementa-

tions, we use ontology to model key concepts and relations
related to stencil computation. As a preliminary evalua-
tion, we focus on a limited set of domains, including the
Shift Calculus DSL, host language programs, and libraries.
Hardware is also modeled to facilitate optimizations requir-
ing hardware details. Figure 6 shows high-level concepts of
the stencil computation ontology.

The DSL domain captures concepts and relations implic-
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Figure 6: Partial top level concepts of the stencil compu-
tation ontology

itly and explicitly included in the Shift Calculus DSL. Exam-
ple concepts include Stencil, Point, Grid, Coordinate, Rect-
MDArray and so on. As an embedded DSL built on top of
a C++ library. We also model concepts and properties of
the library types and interface functions.

The host program domain contains C++ program con-
cepts and relations. Some top level concepts include Ex-
pression, Statement, Variable, Type and so on. Relations
include direct source level connections among language con-
structs, such as hasType, hasBody, hasScope, hasName, has-
Value, and so on. Many more interesting program con-
struct relations, including call and calledBy for function
call relation, alias for variable aliasing, overlap for variables
with overlapped memory storage, access (along with its sub-
properties read and write) for side effects of language con-
structs, and dependence (with sub-properties for true, anti,
and output dependencies) for dependence relations. For a
function with a returned type, we introduce the concept of
returnedVariable, which is unique for each function and re-
lated to the function via a returnedBy relation. Semantics
(such as aliasing) of the returned variable can then be con-
veniently described.

One implementation detail is each entity in the OWL on-
tology must have a unique id, or internationalized resource
identifier (IRI) to allow unambiguous references. IRIs are
defined in different namespaces to avoid name collision. We
use the following choices when creating IRIs for the entities.

• All entities are organized under a namespace
http://www.semanticweb.org/stencilComputation# .

• Fundamental classes and properties are denoted by
their standard or most commonly used names. For ex-
ample, ForStatement is used to indicate the for loops.
Alternative popular names are also added.

• Individuals representing source code constructs use their
source code location information to form IRIs. For ex-
ample, a for loop located between a start position (line
27 column 1) and an end position (line 39 column 50)
in a source file is denoted as /path/file.c:27-1:39-50.

• Named language entities use qualified names as their
IRS. For example, a class defined in a library is speci-
fied as MyLibrary::FirstClass.



With all these concepts and relations defined in multiple
layers, the stencil computation ontology can act as a knowl-
edge base storing a rich set of semantics which are essential
to DSL optimization. For example, two aliasing variables
can be expressed as ObjectPropertyAssertion (:alias :var1
:var2).

3.3 Compiler Implementation With Ontology
We enhanced the original Shift Calculus DSL compiler to

interact with the ontology-based knowledge base to store
and retrieve software and hardware information relevant to
optimizations.

Figure 7 shows the internals of the enhanced DSL com-
piler and some supporting components. One obvious addi-
tion is a knowledge generator, which traverses the abstract
syntax tree (AST) generated from an input DSL program
and generates instances of classes and relations. The gen-
erated knowledge is stored in the knowledge base, through
SWI-Prolog’s semantic web library interface. The generator
may be invoked multiple times as needed during the DSL
lowering process to generate knowledge tied to different lev-
els of the AST. The generator also helps propagate some
semantics in the AST. For example, the returnedVariable
instance of a function call will be related to a left hand vari-
able via a SameIndividual relation in a statement like a =
function();. As a result, the semantics associated with the
returned value of a function are propagated to the left hand
object accepting the returned object in a Prolog query.

Other components are also free to update the knowledge
base when necessary. For example, we have improved ROSE
to provide a set of API functions to support transforma-
tion tracking. The DSL transformation (or lowering) phase
calls these API functions to explicitly store mapping infor-
mation between input and output program constructs of
essential transformation steps. The transformation track-
ing API automatically updates the knowledge base with
subClassOf(:low-level-entity :high-level-entity) to connect these
entities so queries on low-level entities can return semantics
associated with high-level entities.

An integrated development environment for OWL, Pro-
tege, is included in order to enable interactions between the
knowledge base and human users. The knowledge base can
be manually updated for additional domain knowledge.

ROSE
Frontend

Knowledge
Generator

DSL
Program

Ontology-Based Knowledge Base
(DSL, Program, Hardware)

AST
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Figure 7: Compiler Implementation with ontology

We use two optimization components in ROSE, AutoPar
and PolyOpt, as examples to demonstrate the utilization of
the knowledge base.

ROSE has a module conducting automatic parallelization

(referred to as AutoPar [14]) by inserting OpenMP direc-
tives into sequential codes. AutoPar is a semantic-aware
parallelizer since it can leverage ROSE’s high-level AST to
recognize high-level abstractions and exploit their seman-
tics for automatic parallelization. Previously, a customized
semantics-specification file was designed to store the list of
abstractions and their semantics. The compiler has a spe-
cial parser to read the file and later use the information to
help parallelization. In this paper, we extended AutoPar to
additionally query the ontology-based knowledge base via
Prolog Semantic Web library. Using liveness analysis, Au-
toPar was also extended to insert accelerator directives (omp
target device(..) map(..)) introduced in OpenMP 4.0. For
example, if an array typed variable which is only live-in at
the entrance (and not live-out at the exit) of a parallel loop
offloaded to an accelerators should have a map type of to.

Internally, AutoPar uses a dependence elimination algo-
rithm to tell if a loop can be parallelized or not. A con-
servative dependency analysis first generates all potential
dependence relations associated with a loop. A set of rules
are then used to eliminate these dependencies. One example
rule is that if a dependence is caused by a reduction variable
(obtained by a separate reduction recognition analysis), the
dependence can be eliminated. Another example is that, if
a dependency reported by the dependence analysis is caused
by two pointers and later the two pointers are found to be
not aliasing or overlapping each other (obtained via high-
level semantics stored in the knowledge base), it can also
be eliminated. The loop can be parallelized if there is no
dependencies left in the end.

ROSE also has a polyhedral optimizer, named PolyOpt, to
perform sophisticated loop transformation and nested par-
allelization. Previously, PolyOpt took optimization param-
eters from user command lines to check the eligibility to
perform transformations and then execute the transforma-
tion. Many of the optimization parameters are related to
hardware-specific information, such as cache line size and
cache memory hierarchy. PolyOpt is extended to query the
ontology-based knowledge base for hardware features of a
target platform.

3.4 Preliminary Results
We present a preliminary study to show the effectiveness

of our work. The study takes an input code written in Shift
Calculus DSL that applies a Laplacian operator and per-
forms computation on a 7-point stencil (shown in Figure 4).
The size of the source Box in this example is set to 512. Our
DSL compiler generates the following four output variants:

• a sequential C++ output code without any optimiza-
tion,

• a parallel C++ output code with classic OpenMP par-
allel loop directives.

• a tiled and parallelized output code generated from the
polyhedral transformation with OpenMP directives in-
serted.

• a parallel output code with OpenMP 4.0 accelerator
directives inserted. The code is further translated into
CUDA code by ROSE’s OpenMP accelerator imple-
mentation [15].



Table 2: Performance
Performance Table (in sec.)

Output Variant exec. time
C++ serial 1.51482
C++ OpenMP Parallel 0.380562
C++ Polyhedral Tiled+Parallel 0.503307
CUDA w/ data transfer 9.29446
CUDA w/o data transfer 3.14713e-05

All generated C++ code variants are further compiled by
GCC version 4.8.3. The generated CUDA code is compiled
by NVCC compiler version 7.0.

We run the tests on a 24-core workstation with Intel Xeon
CPU E5-2620 V.3 and 64 GB memory. Four Nvidia Tesla
K40c GPUs are also available on the same system. The per-
formance results are listed in Table 2. It is clear that with
additional software and hardware information, the ShiftCal-
culus DSL compiler can enable more optimizations which
often leads to better performance. The only exception is the
CUDA version when data transferring overhead is counted.

4. RELATED WORK
Ontology techniques have been used to accumulate and

share knowledge in different domains. Prominent manu-
ally created ontologies include Cyc [17] and SUMO [20],
which are aimed at specifying general-purpose concepts as
upper ontologies. Many more domain-specific ontologies ex-
ist. One of the most successful ontolgoies is the gene ontol-
ogy [2], which addresses the need for consistent descriptions
of gene products and their relationships across all species in
bioinformatics. In ambient intelligence [10], a research field
of studying digital and proactive environment sensing to as-
sist users in their daily lives, ontologies are used to model
both environment context [21] and human behaviors [24].
In Robotics, KnowRob [28] is an influential ontology-based
knowledge base for describing perception and actions of ser-
vice robots. To the best of our knowledge, our work is the
first attempt to apply ontology to the multiple domains re-
lated to DSL targeting HPC.

Some previous studies [32, 16, 5, 31, 27, 4] have explored
using ontology to help develop domain specific languages
for programming or modeling purposes. Most of these stud-
ies [27, 5] focus on domain analysis and/or language design,
without discussion connections with implementation and op-
timizations aimed for performance. A notable study [5] com-
pared ontology-based domain analysis with classic domain
analysis using Feature-Oriented Domain Analysis (FODA).
The authors also showed how ontology can be translated to
DSL grammars. Others studied domain-specific modeling
languages [31, 4], not for programming languages. For ex-
ample, Walter et. al. [32] relies on expressiveness of OWL2
and its reasoning facilities to check concept satisfiability and
consistency of domain-specific modeling . Lortal et. al [16]
propose to reuse the knowledge of a robotic ontology to de-
velop robotics modeling languages. In contrast, our work fo-
cuses on using ontology to enchance DSL implementations
for programming parallel computers. We use ontology to
capture not only software domain semantics (knowledge),
but also crucial hardware details. Our approach also de-
fines how compilers and runtime systems can interact with
an ontology-based knowledge base to facilitate DSL code

generation and optimizations.
Numerous DSLs, including stencil DSLs, have been de-

veloped for HPC. We only name a few examples for brevity.
The ExaSlang[25] is one of the DSLs in ExaStencil project [13]
that focuses on highly scalable multigrid solvers. It uses
high-level syntax to describe the algorithmic information in
a multigrid computation. The optimizations for a ExaSlang
program are part of the code generation pipeline and will
not be directed by the high-level language. A customized
Target Platform Description Language (TPDL) is used by
ExaStencil to describe machine information. Halide [23] is a
DSL designed to describe image processing pipelines. Users
explicitly specify the pipelines using chains of functions. The
Halide compiler uses an auto-tuning approach to retrieve
an optimal scheduling and performs required optimizations.
STELLA (STEncil Loop Language) [1] is a C++ domain
specific embedded language designed to implement the dif-
ferent stencil motifs for structured grids used in the Con-
sortium for Small-Scale Modeling (COSMO). STELLA ab-
stracts the stencil formulation to allow users to write codes
with good portability. Our work is unique in that we en-
hance DSL implementations by adding a formal and dedi-
cated knowledge base to explicitly store multiple layers of
information related to domains, programs, and hardware.

5. CONCLUSIONS
In this paper, we have presented a novel ontology-based

knowledge representation and utilization approach to cap-
ture, share and use both software and hardware information
needed to enable efficient domain-specific language imple-
mentations targeting high performance computing. Com-
pared to traditional ad-hoc approaches using scattered, cus-
tomized annotations and specifications, our approach is for-
mal, uniform, standardized, reusable, extensible and scal-
able. The chosen modern ontology language, OWL, enables
us to leverage a wide range of knowledge engineering, val-
idating, and reasoning tools developed for OWL. Using a
stencil DSL as an example, we have demonstrated how our
approach can be used to model essential concepts and prop-
erties in multiple software and hardware domains. We also
have shown how the resulting knowledge base can easily in-
teract with human users and software agents (e.g. compilers)
to acquire new knowledge and retrieve existing knowledge to
facilitate DSL implementations.
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processing for autonomous personal robots. In
Intelligent Robots and Systems, 2009. IROS 2009.
IEEE/RSJ International Conference on, pages
4261–4266. IEEE, 2009.

[29] D. Tsarkov and I. Horrocks. Fact++ description logic
reasoner: System description. In Automated reasoning,
pages 292–297. Springer, 2006.

[30] A. Van Deursen, P. Klint, and J. Visser.
Domain-specific languages: An annotated
bibliography. Sigplan Notices, 35(6):26–36, 2000.

[31] T. Walter, F. S. Parreiras, and S. Staab. Ontodsl: An
ontology-based framework for domain-specific
languages. In Model Driven Engineering Languages
and Systems, pages 408–422. Springer, 2009.

[32] T. Walter, F. S. Parreiras, and S. Staab. An
ontology-based framework for domain-specific



modeling. Software & Systems Modeling, 13(1):83–108,
2014.

[33] J. Wielemaker. SWI-Prolog Semantic Web Library 3.0.

[34] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager.
SWI-Prolog. Theory and Practice of Logic
Programming, 12(1-2):67–96, 2012.


